

RADICAL-Pilot 0.50.21 Documentation

RADICAL-Pilot (RP) is a Pilot Job [https://en.wikipedia.org/wiki/Pilot_job] system
written in Python. It allows a user to run large numbers of computational tasks
(called ComputeUnits) concurrently on one or more remote ComputePilots
that RADICAL-Pilot can start transparently on a multitude of different
distributed resources, like HPC clusters and Clouds.

In this model, a part (slice) of a resource is acquired by a user’s application
so that the application can directly schedule ComputeUnits into that
resource slice, rather than going through the system’s job scheduler. In many
cases, this can drastically shorten overall exeuction time as the individual
ComputeUnits don’t have to wait in the system’s scheduler queue but can
execute directly on the ComputePilots.

ComputeUnits can be sequential, multi-threaded (e.g. OpenMP), parallel process
(e.g. MPI) executables, Hadoop or Spark applications.

RADICAL-Pilot is not a static system, but it rather provides the user with
a programming library (“Pilot-API”) that provides abstractions for resource
access and task management. With this library, the user can develop everything
from simple “submission scripts” to arbitrarily complex applications, higher-
level services and tools.

Links

	repository: https://github.com/radical-cybertools/radical.pilot

	user list: https://groups.google.com/d/forum/radical-pilot-users

	developer list: https://groups.google.com/d/forum/radical-pilot-devel

Contents:

	1. Introduction

	2. RADICAL-Pilot - Overview
	2.1. What Problems does RP solve?

	2.2. What is a Pilot?

	2.3. What is a Compute Unit (CU)?

	2.4. How about data?

	2.5. Why do I need a MongoDB to run RP?

	2.6. How do I know what goes on in the pilot? With my CUs?

	2.7. What about logging and profiling?

	3. Installation
	3.1. Requirements

	3.2. Installation

	3.3. Preparing the Environment

	3.4. Troubleshooting

	4. User Guide
	4.1. Getting Started

	4.2. Obtaining Unit Details

	4.3. Handle Failing Units

	4.4. Use Multiple Pilots

	4.5. Selecting a Unit Scheduler

	4.6. Staging Unit Input Data

	4.7. Staging Unit Output Data

	4.8. Sharing Unit Input Data

	4.9. Setup Unit Environment

	4.10. MPI Applications

	4.11. Using Pre- and Post- exec commands

	5. Examples
	5.1. Simple Bag-of-Tasks

	5.2. Chained Tasks

	5.3. Coupled Tasks

	5.4. MPI tasks

	6. API Reference
	6.1. Sessions and Security Contexts

	6.2. Pilots and PilotManagers

	6.3. ComputeUnits and UnitManagers

	6.4. Exceptions

	7. Data Staging
	7.1. Compute Unit I/O

	7.2. Compute Pilot I/O

	7.3. Examples

	8. Using Local and Remote HPC Resources
	8.1. Introduction

	8.2. Configuring SSH Access

	8.3. Pre-Configured Resources

	8.4. Writing a Custom Resource Configuration File

	8.5. Customizing Resource Configurations Programatically

	9. Unit Scheduler
	9.1. Introduction

	9.2. Round-Robin Scheduler (SCHEDULER_ROUND_ROBIN)

	9.3. Backfilling Scheduler (SCHEDULER_BACKFILLING)

	10. Testing
	10.1. Introduction

	10.2. Remote Testing

	10.3. Adding New Tests

	11. Benchmarks

	12. Details on Profiling

	13. Frequently Asked Questions
	13.1. How do I…

	13.2. Other Questions

	14. Developer Documentation
	14.1. Installation from Source

	14.2. License

	14.3. Style Guide

	14.4. Debugging

	14.5. RADICAL-Pilot Architecture

1. Introduction

RADICAL-Pilot (RP) is a Pilot Job [https://en.wikipedia.org/wiki/Pilot_job]
system written in Python. It allows a user to run large numbers of computational
tasks (called ComputeUnits) concurrently on one or more remote
ComputePilots that RADICAL-Pilot can start transparently on a multitude of
different distributed resources, like HPC clusters and Clouds.

In this model, a part (slice) of a resource is acquired by a user’s application
so that the application can directly schedule ComputeUnits into that
resource slice, rather than going through the system’s job scheduler. In many
cases, this can drastically shorten overall exeuction time as the individual
ComputeUnits don’t have to wait in the system’s scheduler queue but can
execute directly on the ComputePilots.

ComputeUnits are often single-core / multi-threaded executables, but
RADICAL-Pilot also supports execution of parallel executables, for example based
on MPI, OpenMP, YARN/HADOOP and Spark.

RADICAL-Pilot is not a static system, but it rather provides the user with
a programming library (“Pilot-API”) that provides abstractions for resource
access and task management. With this library, the user can develop everything
from simple “submission scripts” to arbitrarily complex applications, higher-
level services and tools.

[image: _images/architecture.png]
The RP architecture overview image above shows the main components or RP, and
their functional relationships. The RP system will interpret pilot descriptions
and submit the respective pilot instances on the target resources. It will then
accept unit descriptions and submit those for execution onto the earlier created
pilots. The Chapter RADICAL-Pilot Overview will
discuss those concepts in some more detail, before then turning to
Installation which will describe how RP is deployed and
configured, so that the reader can follow the upcoming examples.

2. RADICAL-Pilot - Overview

This section provides a conceptual overview about RADICAL-Pilot (RP). You will
learn what problems RP aims to solve for you. You will also be introduced to
some vocabulary, and the overall RP architecture and operation.

We will keep the information on a very general level, and will avoid any details
which will not contribute to the user experience. Having said that, feel free
to skip ahead to the User Guide if you are more interested in
directly diving into the thick of using RP!

2.1. What Problems does RP solve?

RP attempts to support in running applications on distributed resources, and
focuses on two aspects:

	abstract the heterogeneity of distributed resources, so that running
applications is uniform across them, from a users perspective;

	support the efficient execution of large numbers of concurrent or sequential
application instances.

2.2. What is a Pilot?

The Pilot in RADICAL-Pilot stands for a job-container like construct which
manages a part (slice) of a remote resource on the user’s (or application’s)
behalf, and which executes sequences of ComputeUnits on that resource slice.

RP applications will, in general, first define a set of such pilots, ie. the set
of target resources, the size of the resource slice to manage, etc), and then
submit those pilots to the resources. Once the pilots are defined, the
application can send them ComputeUnits (see below) for execution.

[image: _images/architecture.png]

2.3. What is a Compute Unit (CU)?

An RP ComputeUnit (CU, or ‘unit’) represents a self-contained, executable part
of the application’s workload. A CU is described by the following attributes
(for details, check out the API documentation):

	executable : the name of the executable to be run on the target machines

	arguments : a list of argument strings to be passed to the executable

	environment : a dictionary of environment variable/value pairs to be set
before unit execution

	input_staging : a set of staging directives for input data

	output_staging: a set of staging directives for output data

2.4. How about data?

Data management is important for executing CUs, both in providing input data,
and staging/sharing output data. RP has different means to handle data, and
they are specifically covered in sections
in
the
UserGuide.

2.5. Why do I need a MongoDB to run RP?

The RP application uses a MongoDB database to communicate with the pilots it
created: upon startup, the pilots will connect to the database and look for CUs
to execute. Similarly, pilots will push information into the database, such as
about units which completed execution.

2.6. How do I know what goes on in the pilot? With my CUs?

There are many aspects to that question. First, pilots and units progress
according to well defined state models:

[image: _images/global-state-model-plain.png]
pilot.state and unit.state will always report the current state of the
entities.

Callbacks can be registered for notifications on unit and pilot state changes.

Setting RADICAL_PILOT_VERBOSE=INFO will turn on logging, which provides
very detailed information about RP’s inner functionality. Pilots running on
target resources also create log files (those should only be useful for
debugging purposes).

2.7. What about logging and profiling?

RP supports logging to the terminal and to files. Also, profiles can be written
during runtime. You can set the following variables:

RADICAL_PILOT_VERBOSE=DEBUG
RADICAL_PILOT_LOG_TGT=/tmp/rp.log
RADICAL_PILOT_PROFILE=True

The defined verbosity levels are the same as defined by Python’s logging module

3. Installation

3.1. Requirements

RADICAL-Pilot requires the following packages:

	Python >= 2.7 (including development headers)

	virtualenv >= 1.11

	pip == 1.4.1

or
* Anaconda Python 2.7

If you plan to use RADICAL-Pilot on remote machines, you would also require to
setup a password-less ssh login to the particular machine.
(help [http://www.debian-administration.org/article/152/Password-less_logins_with_OpenSSH])

All dependencies are installed automatically by the installer. Besides that,
RADICAL-Pilot needs access to a MongoDB database that is reachable from the
internet. User groups within the same institution or project usually share
a single MongoDB instance. MongoDB is standard software and available in most
Linux distributions. At the end of this section, we provide brief instructions
how to set up a MongoDB server and discuss some advanced topics, like SSL
support and authentication to increased the security of RADICAL-Pilot.

3.2. Installation

RADICAL-Pilot is distributed via PyPi and Conda-Forge. To install RADICAL-Pilot
to a virtual environment do:

3.2.1. via PyPi

virtualenv --system-site-packages $HOME/ve
source $HOME/ve/bin/activate
pip install radical.pilot

3.2.2. via Conda-Forge

conda create -n ve -y python=2.7
source activate ve
conda install radical.pilot -c conda-forge

For a quick sanity check, to make sure that the the packages have been installed
properly, run:

$ radicalpilot-version
0.50.8

The exact output will obviously depend on the exact version of RP which got
installed.

** Installation is complete !**

3.3. Preparing the Environment

3.3.1. MongoDB Service

RP requires access to a MongoDB server. The MongoDB server is used to store and
retrieve operational data during the execution of an application using
RADICAL-Pilot. The MongoDB server must be reachable from both, the host that
runs the RP application and the target resource which runs the pilots.

Warning

If you want to run your application on your laptop or private
workstation, but run your MD tasks on a remote HPC cluster,
installing MongoDB on your laptop or workstation won’t work.
Your laptop or workstations usually does not have a public IP
address and is hidden behind a masked and firewalled home or office
network. This means that the components running on the HPC cluster
will not be able to access the MongoDB server.

Any MongoDB installation should work out, as long as RP is allowed to create
databases and collections (which is the default user setting in MongoDB).

The MongoDB location is communicated to RP via the environment variable
RADICAL_PILOT_DBURL. The value will have the form

export RADICAL_PILOT_DBURL="mongodb://user:pass@host:port/dbname"
export RADICAL_PILOT_DBURL="mongodb://host:port/dbname"

Many MongoDB instances are by default unsecured, and thus do not require the
user:pass@ part of the URL. For production runs, and for runs on large
secured resources, we strongly recommend the usage of a secured MongoDB
instance!

The dbname component in the database url can be any valid MongoDB database
name (ie. it musy not contain dots).RP will not create that DB on the fly and
requires the DB to be setup prior to creating the session object. But RP will
create collections in that DB on its own, named after RP session IDs.

A MongoDB server can support more than one user. In an environment where
multiple users use RP applications, a single MongoDB server for all users
/ hosts is usually sufficient. We recommend the use of separate databases per
user though, so please set the dbname to something like db_joe_doe.

Install your own MongoDB

Once you have identified a host that can serve as the new home for MongoDB,
installation is straight forward. You can either install the MongoDB
server package that is provided by most Linux distributions, or
follow the installation instructions on the MongoDB website:

	http://docs.mongodb.org/manual/installation/

MongoDB-as-a-Service

There are multiple commercial providers of hosted MongoDB services, some of them
offering free usage tiers. We have had some good experience with the following:

	https://mongolab.com/

3.3.2. Setup SSH Access to Target Resources

An easy way to setup SSH Access to multiple remote machines is to create a file
~/.ssh/config. Suppose the url used to access a specific machine is
foo@machine.example.com. You can create an entry in this config file as
follows:

contents of $HOME/.ssh/config
Host mach1
 HostName machine.example.com
 User foo

Now you can login to the machine by using ssh mach1. Please make also sure
that your ssh keys are registered on the target resources – while RP can in
principle handle password based login, the repeated prompts for passwords makes
RP applications very difficult to use.

Source: http://nerderati.com/2011/03/17/simplify-your-life-with-an-ssh-config-file/

3.4. Troubleshooting

Missing virtualenv

This should return the version of the RADICAL-Pilot installation, e.g., 0.X.Y.

If virtualenv is not installed on your system, you can try the following.

wget --no-check-certificate https://pypi.python.org/packages/source/v/virtualenv/virtualenv-1.9.tar.gz
tar xzf virtualenv-1.9.tar.gz

python virtualenv-1.9/virtualenv.py $HOME/ve
source $HOME/ve/bin/activate

Installation Problems

Many installation problems boil down to one of two causes: an Anaconda based Python
distribution, or an incompatible version of pip/setuptools.

Many recent systems, specifically in the academic community, install Python in
its incarnation as Anaconda Distribution. RP is not yet able to function in
that environment. While support of Anaconda is planned in the near future, you
will have to revert to a ‘normal’ Python distribution to use RP.

Python supports a large variety of module deployment paths: easy_install,
setuptools and pip being the most prominent ones for non-compilable
modules. RP only supports pip, and even for pip we do not attempt to keep
up with its vivid evolution. If you encounter pip errors, please downgrade pip
to version 1.4.1, via

$ pip install --upgrade pip==1.4.1

If you continue to encounter problems, please also fix the version of setuptools
to 0.6c11 via

$ pip install --upgrade setuptools==0.6c11

Note

RADICAL-Pilot can be installed under Anaconda, although that mode is not
tested as thoroughly compared to installation under non-Anaconda Python.

Mailing Lists

If you encounter any errors, please do not hesitate to contact us via the
mailing list:

	https://groups.google.com/d/forum/radical-pilot-users

We also appreciate issues and bug reports via our public github tracker:

	https://github.com/radical-cybertools/radical.pilot/issues

4. User Guide

This chapter will guide the reader through the most commonly used features of
RADICAL-Pilot (RP). We will start with a basic RP example, and then discuss individual RP features which
augment the basic example towards a more complete set of applications.

	4.1. Getting Started

	4.2. Obtaining Unit Details

	4.3. Handle Failing Units

	4.4. Use Multiple Pilots

	4.5. Selecting a Unit Scheduler

	4.6. Staging Unit Input Data

	4.7. Staging Unit Output Data

	4.8. Sharing Unit Input Data

	4.9. Setup Unit Environment

	4.10. MPI Applications

	4.11. Using Pre- and Post- exec commands

4.1. Getting Started

In this section we will walk you through the basics of using RP. After you
have worked through this chapter, you will understand how to launch a local
ComputePilot and use a UnitManager to schedule and run ComputeUnits
(tasks) on it.

Note

The reader is assumed to be familiar with the general RP concepts as
described in RADICAL-Pilot - Overview for reference.

Note

This chapter assumes that you have successfully installed
RADICAL-Pilot, and also configured access to the resources you intent
to use for the examples (see chapter Installation).

Note

We colloquially refer to ComputePilot as pilot, and to
ComputeUnit as unit.

You can download the basic 00_getting_started.py. The text below will explain the
most important code sections, and at the end shows the expected output
from the execution of the example. Please look carefully at the code comments as
they explain some aspects of the code which are not explicitly covered in the
text below.

4.1.1. Loading the RP Module, Follow the Application Execution

In order to use RADICAL-Pilot, you need to import the radical.pilot module (we use the rp abbreviation for the module name)
in your Python script or application:

import radical.pilot as rp

All example scripts used in this user guide use the LogReporter
facility (of RADICAL-Utils) to print runtime and progress information. You can
control that output with the RADICAL_PILOT_VERBOSE variable, which can be set
to the normal Python logging levels, and to the value REPORT to obtain well
formatted output. We assume the REPORT setting to be used when referencing
any output in this chapter.

os.environ['RADICAL_PILOT_VERBOSE'] = 'REPORT'

import radical.pilot as rp
import radical.utils as ru

report = ru.LogReporter(name='radical.pilot')
report.title('Getting Started (RP version %s)' % rp.version)

4.1.2. Creating a Session

A radical.pilot.Session is the root object for all other objects in
RADICAL- Pilot. radical.pilot.PilotManager and
radical.pilot.UnitManager instances are always attached to a Session,
and their lifetime is controlled by the session.

A Session also encapsulates the connection(s) to a backend MongoDB [http://www.mongodb.org/] server which facilitates the communication between
the RP application and the remote pilot jobs. More information about how
RADICAL-Pilot uses MongoDB can be found in the RADICAL-Pilot - Overview section.

To create a new Session, the only thing you need to provide is the URL of
a MongoDB server. If no MongoDB URL is specified on session creation, RP
attempts to use the value specified via the RADICAL_PILOT_DBURL environment
variable.

os.environ['RADICAL_PILOT_DBURL'] = 'mongodb://db.host.net:27017/<db_name>'

session = rp.Session()

Warning

Always call radical.pilot.Session.close() before your
application terminates. This will terminate all lingering pilots and cleans
out the database entries of the session.

4.1.3. Creating ComputePilots

A radical.pilot.ComputePilot is responsible for ComputeUnit execution.
Pilots can be launched either locally or remotely, and
they can manage a single node or a large number of nodes on a cluster.

Pilots are created via a radical.pilot.PilotManager, by passing
a radical.pilot.ComputePilotDescription. The most important elements
of the ComputePilotDescription are

	resource: a label which specifies the target resource to run the pilot
on, ie. the location of the pilot;

	cores : the number of CPU cores the pilot is expected to manage, ie.
the size of the pilot;

	runtime : the numbers of minutes the pilot is expected to be active, ie.
the runtime of the pilot.

Depending on the specific target resource and use case, other properties need to
be specified. In our user guide examples, we use
a separate config.json file to store a number of properties per resource
label, to simplify the example code. The examples themselves then accept one or
more resource labels, and create the pilots on those resources:

use the resource specified as argument, fall back to localhost
try : resource = sys.argv[1]
except: resource = 'local.localhost'

create a pilot manage in the session
pmgr = rp.PilotManager(session=session)

define an [n]-core local pilot that runs for [x] minutes
pdesc = rp.ComputePilotDescription({
 'resource' : resource,
 'cores' : 64, # pilot size
 'runtime' : 10, # pilot runtime (min)
 'project' : config[resource]['project'],
 'queue' : config[resource]['queue'],
 'access_schema' : config[resource]['schema']
 }

submit the pilot for launching
pilot = pmgr.submit_pilots(pdesc)

For a list of available resource labels, see List of Pre-Configured Resources (not all
of those resources are configured for the userguide examples). For further
details on the pilot description, please check the API Documentation.

Warning

Note that the submitted pilot agent will not terminate
when your Python scripts finishes. Pilot agents terminate only after
they have reached their runtime limit, are killed by the target system,
or if you explicitly cancel them via radical.pilot.Pilot.cancel(),
radical.pilot.PilotManager.cancel_pilots(), or
radical.pilot.Session.close(terminate=True)().

4.1.4. Submitting ComputeUnits

After you have launched a pilot, you can now generate
radical.pilot.ComputeUnit objects for the pilot to execute. You
can think of a ComputeUnit as something very similar to an operating system
process that consists of an executable, a list of arguments, and an
environment along with some runtime requirements.

Analogous to pilots, a units is described via a
radical.pilot.ComputeUnitDescription object. The mandatory properties
that you need to define are:

	executable - the executable to launch

	cores - the number of cores required by the executable

Our basic example creates 128 units which each run /bin/date:

n = 128 # number of units to run
cuds = list()
for i in range(0, n):
 # create a new CU description, and fill it.
 cud = rp.ComputeUnitDescription()
 cud.executable = '/bin/date'
 cuds.append(cud)

Units are executed by pilots. The :class:radical.pilot.UnitManager
class is responsible for routing those units from the application to the
available pilots. The UnitManager accepts ComputeUnitDescriptions as we
created above and assigns them, according to some scheduling algorithm, to the
set of available pilots for execution (pilots are made available to a
UnitManager via the add_pilot call):

create a unit manager, submit units, and wait for their completion
umgr = rp.UnitManager(session=session)
umgr.add_pilots(pilot)
umgr.submit_units(cuds)
umgr.wait_units()

4.1.5. Running the Example

Note

Remember to set RADICAL_PILOT_DBURL in you environment (see chapter
Installation).

Running the example will result in an output similar to the one shown below:

[image: ../_images/00_getting_started.png]
The runtime can vary significantly, and typically the first run on any resource will be longest.
This is because the first time RP is used on a new resource for a specific user,
it will set up a Python virtualenv for the pilot to use. Subsequent runs may
update that virtualenv, or may install additional components as needed, but that
should take less time than its creation. So please allow for a couple of
minutes on the first execution (depending on your network connectivity, the
connectivity of the target resource, and the location of the MongoDB service).

4.1.6. What’s Next?

The next user guide section (Obtaining Unit Details) will describe how an
application can inspect completed units for more detailed information,
such as exit codes and stdout/stderr.

4.2. Obtaining Unit Details

The previous chapter discussed the basic RP
features, how to submit a pilot, and how to submit ComputeUnits to that pilot
for execution. We will here show how an application can, after the units
complete, inspect the details of that execution.

You can download the script 01_unit_details.py, which has the following diff to the
basic example:

[image: ../_images/getting_started_00_01.png]
You’ll notice that we capture the return value of submit_units() in line 99,
which is in fact a list of ComputeUnit instances. We use those instances for
inspection later on, after we waited for completion. Inspection is also
available earlier, but may then, naturally, yield incomplete results. A unit
will always have a state though, according to the state model discussed in
RADICAL-Pilot - Overview.

The code block below contains what most applications are interested is: unit
state, exit code, and standard output (we’ll see later that stderr is handled equivalently):

report.plain(' * %s: %s, exit: %3s, out: %s\n' \
 % (unit.uid, unit.state[:4],
 unit.exit_code, unit.stdout.strip()[:35]))

Note

The reporting of standard output in this manner is a convenience
method, and cannot replace proper output file staging: the resulting string
will be shortened on very long outputs (longer than 1kB by default), and it
may contain information from RP which are not strictly part of the
application stdout messages. The proper staging of output file will be
discussed in a :ref:later <chapter_user_guide_06>` example.

4.2.1. Running the Example

Running the example will result in an output similar to the one shown below:

[image: ../_images/01_unit_details.png]

4.2.2. What’s Next?

The next user guide section (Handle Failing Units) will describe how
failed units can be differentiated from successful ones – although the avid
reader will already have an intuition on how that is done.

4.3. Handle Failing Units

All applications can fail, often for reasons out of control of the user.
A ComputeUnit is no different, it can fail as well. Many non-trivial
application will need to have a way to handle failing units – detecting the
failure is the first and necessary step to do so, and RP makes that part easy:
RP’s unit state model defines that a failing unit will
immediately go into FAILED state, and that state information is available as
unit.state property.

The unit also has the unit.stderr property available for further inspection
into causes of the failure – that will only be available though if the unit did
reach the EXECUTING state in the first place. In other cases, the application
can inspect the unit.as_dict()[‘execution_details’][‘log’] array of timed log
messages, similar to the state_history array discussed before.

You can download the script 02_failing_units.py, which demonstrates inspection for
failed units. It has the following diff to the previous example:

[image: ../_images/getting_started_01_02.png]
Instead of running an executable we are almost certain will succeed, we now and
then insert an intentional faulty one whose specified executable file does not
exist on the target system. Upon state inspection, we expect to find a FAILED
state for those units, and a respective informative stderr output:

4.3.1. Running the Example

Running the example will result in an output similar to the one shown below:

[image: ../_images/02_failing_units.png]

Note

You will see red glyphs during the result gathering phase, indicating
that a failed unit has been collected. The example output above also
demonstrates an important feature: execution ordering of units is not
preserved, that order is independent of the order of submission. Any unit
dependencies need to be resolved on application level!

4.3.2. What’s Next?

The next user guide section (Use Multiple Pilots) will return to the
basic example (ie. no failing units are expected), but will now submit those
units to more than one concurrent pilots.

4.4. Use Multiple Pilots

We have seen in the previous examples how an RP pilot acts as a container for
multiple compute unit executions. There is in principle no limit on how many of
those pilots are used to execute a specific workload, and specifically, pilot
don’t need to run on the same resource!

03_multiple_pilots.py
demonstrates that, and features the following diff to the previous examples:

[image: ../_images/getting_started_02_03.png]
Instead of creating one pilot description, we here create one for any resource
specified as command line parameter, no matter if those parameters point to the
same resource targets or not.

The units are distributed over the created set of pilots according to some
scheduling mechanism – section Selecting a Unit Scheduler will discuss how an
application can choose between different scheduling policies. The default
policy used here is Round Robin.

4.4.1. Running the Example

The workload of our example has now changed to report the respectively used
pilot on stdout, and the output shows that. We here exemplarily start a pilot
on local.localhost, and one on xsede.stampede:

[image: ../_images/03_multiple_pilots.png]

4.4.2. What’s Next?

Using multiple pilots is very powerful – it becomes more powerful if you allow
RP to load-balance units between them. Selecting a Unit Scheduler will show
how to do just that.

4.5. Selecting a Unit Scheduler

We have seen in the previous examples how the radical.pilot.UnitManager
matches submitted units to pilots for execution. On constructing the unit
manager, it can be configured to use a specific scheduling policy for that. The
following policies are implemented:

	rp.SCHEDULER_ROUND_ROBIN: alternate units between all available pilot. This
policy leads to a static and fair, but not necessarily load-balanced unit
assignment.

	rp.SCHEDULER_BACKFILLING: dynamic unit scheduling based on pilot capacity and
availability. This is the most intelligent scheduler with good load
balancing, but it comes with a certain scheduling overhead.

An important element to consider when discussing unit scheduling is pilot
startup time: pilot jobs can potentially sit in batch queues for a long time, or
pass quickly, depending on their size and resource usage, etc. Any static
assignment of units will not be able to take that into account – and the first
pilot may have finished all its work before a second pilot even came up.

This is what the backfilling scheduler tries to address: it only schedules units
once the pilot is available, and only as many as a pilot can execute at any
point in time. As this requires close communication between pilot and
scheduler, that scheduler will incur a runtime overhead for each unit – so that
is only advisable for heterogeneous workloads and/or pilot setups, and for long
running units.

04_scheduler_selection.py
shows an exemplary scheduling selector, with the following diff to the previous
multi-pilot example:

[image: ../_images/04_scheduler_selection_a.png]
It will select Round Robin scheduling for two pilots, and Backfilling for
three or more.

4.5.1. Running the Example

We show here the output for 3 pilots, where one is running locally (and thus is
likely to come up quickly), and 2 are running exemplarily on xsede.stampede and
epsrc.archer, respectively, where they likely will sit in the queue for a bit.
We thus expect the backfilling scheduler to prefer the local pilot
(pilot.0000).

[image: user_guide/04_scheduler_selection_b.png]

4.5.2. What’s Next?

Using multiple pilots is very powerful – it becomes more powerful if you allow
RP to load-balance units between them. Selecting a Unit Scheduler will show
how to do just that.

4.6. Staging Unit Input Data

The vast majority of applications operate on data, and many of those read input
data from files. Since RP provides an abstraction above the resource layer, it
can run a ComputeUnit on any pilot the application created (see
Selecting a Unit Scheduler). To ensure that the CU finds the data it needs on
the resource where it runs, RP provides a mechanism to stage input data
automatically.

For each compute unit, the application can specify

	source: what data files need to be staged;

	target: what should the path be in the context of the CU execution;

	action: how should data be staged.

If source and target file names are the same, and if action is the default
rp.TRANSFER, then you can simply specify CU input data by giving a list of
file names (we’ll discuss more complex staging directives in a later example):

cud = rp.ComputeUnitDescription()
cud.executable = '/usr/bin/wc'
cud.arguments = ['-c', 'input.dat']
cud.input_staging = ['input.dat']

05_unit_input_data.py
contains an example application which uses the above code block. It otherwise
does not differ from our earlier examples (but only adds on-th-fly creation of
input.dat).

4.6.1. Running the Example

The result of this example’s execution is straight forward, as expected, but
proves that the file staging happened as planned. You will likely notice though
that the code runs significantly longer than earlier ones, because of the file
staging overhead – we will discuss in Sharing Unit Input Data how file
staging can be optimized for units which share the same input data.

[image: ../_images/05_unit_input_data.png]

4.6.2. What’s Next?

The obvious next step will be to handle output data:
Staging Unit Output Data will address exactly this, and also provide some
more details on different modes of data staging, before
Sharing Unit Input Data will introduce RP’s capability to share data
between different compute units.

4.7. Staging Unit Output Data

Upon completion, CUs have often creates some amount of data. We have seen in
Obtaining Unit Details how we can inspect the CU’s stdout string – but
that will not be useful beyond the most trivial workloads. This section
introduces how created data can be staged back to the RP application, and/or
staged to 3rd party storage.

Output staging is in principle specified just like the input staging discussed
in the ref:previous <chapter_user_guide_05> section:

	source: what data files need to be staged from the context of the finished CU;

	target: where should the data be staged to;

	action: how should data be staged.

In this example we actually use the long form, and specify the output file name
to be changed to a unique name during staging:

for i in range(0, n):
 cud.executable = '/bin/cp'
 cud.arguments = ['-v', 'input.dat', 'output.dat']
 cud.input_staging = ['input.dat']
 cud.output_staging = {'source': 'output.dat',
 'target': 'output_%03d.dat' % i,
 'action': rp.TRANSFER}

06_unit_output_data.py
contains an example application which uses the above code block. It otherwise
does not significantly differ from our previous example.

4.7.1. Running the Example

The result of this example’s execution shows that the output files have been
renamed during the output-staging phase:

[image: ../_images/06_unit_output_data.png]

4.7.2. What’s Next?

As we are now comfortable with input and output staging, we will next look into
an optimization which is important for a large set of use cases: the
sharing of input data between multiple compute
units.

4.8. Sharing Unit Input Data

RP aims to support the concurrent execution of many tasks, and for many
workloads which fit that broad description, those tasks share (some or all)
input data. We have seen earlier that input
staging can incur a significant runtime overhead – but that can be
significantly reduced by avoiding redundant staging operations.

For this purpose, each RP pilot manages a spaces of shared data, and any data
put into that space by the application can later be symlinked into the unit’s
workdir, for consumption:

stage shared data from `pwd` to the pilot's shared staging space
pilot.stage_in({'source': 'file://%s/input.dat' % os.getcwd(),
 'target': 'staging:///input.dat',
 'action': rp.TRANSFER})

[...]

for i in range(0, n):

 cud = rp.ComputeUnitDescription()

 cud.executable = '/usr/bin/wc'
 cud.arguments = ['-c', 'input.dat']
 cud.input_staging = {'source': 'staging:///input.dat',
 'target': 'input.dat',
 'action': rp.LINK
 }

The rp.LINK staging action requests a symlink to be created by RP, instead of
the copy operation used on the default rp.TRANSFER action. The full example
can be found here:
07_shared_unit_data.py.

Note

Unlike many other methods in RP, the pilot.stage_in option is
synchronous, ie. it will only return once the transfer has been
completed. That semantics may change in a future version of RP.

4.8.1. Running the Example

The result of this example’s execution is the very same as we saw in the
previous, but it will now run significantly
faster due to the removed staging redundancy (at least for non-local pilots):

[image: ../_images/07_shared_unit_data.png]

4.8.2. What’s Next?

This completes the discussion on data staging – the next sections will go into
more details of the units execution: environment setup,
pre- and post- execution,
and MPI applications.

4.9. Setup Unit Environment

Different Applications come with different requirements to the runtime
environment. This section will describe how the shell environment for a CU can
be configured, the next two sections will describe how to
configure CUs to run as MPI application and how to
insert arbitrary setup commands.

The CU environment is simply configured as a Python dictionary on the unit
description, like this:

cud = rp.ComputeUnitDescription()

cud.executable = '/bin/echo'
cud.arguments = ['$RP_UNIT_ID greets $TEST']
cud.environment = {'TEST' : 'jabberwocky'}

which will make the environment variable TEST available during CU execution.
Some other variables, such as the RP_UNIT_ID above, are set by RP internally
and are here used for demonstration – but those should not be relied upon.

4.9.1. Running the Example

08_unit_environment.py.
uses the above blob to run a bag of echo commands:

[image: ../_images/08_unit_environment.png]

4.9.2. What’s Next?

Running MPI applications, and
:ref:providing more generic environment setup <chapter_user_guide_10>`, are the
topics for the next two sections.

4.10. MPI Applications

CUs which execute MPI applications are, from an RP application perspective, not
really different from other CUs – but the application needs to communicate to
RP that the unit will (a) allocate a number of cores, and (b) needs to be
started under an MPI regime. The respective CU description entries are shown
below:

cud = rp.ComputeUnitDescription()

cud.executable = '/bin/echo'
cud.arguments = ['-n', '$RP_UNIT_ID ']
cud.cores = 2
cud.mpi = True

This example should result in the unit ID echo’ed twice, once per MPI rank.

Note

Some RP configurations require MPI applications to be linked against
a specific version of OpenMPI. This is the case when using orte or
orte_lib launch methods in the agent. Please contact the mailing
list if you need support with relinking your application.

4.10.1. Running the Example

09_mpi_units.py.
uses the above blob to run a bag of duplicated echo commands:

[image: ../_images/09_mpi_units.png]

4.10.2. What’s Next?

Running MPI applications, and
:ref:providing more generic environment setup <chapter_user_guide_10>`, are the
topics for the next two sections.

4.11. Using Pre- and Post- exec commands

In some cases, applications (and thus CUs) need more complex and customizable
setup routines than can be expressed via environment
or MPI flags. A frequent example is the use of
module load commands on various HPC resources, which are used to prepare
application runtime environments in a well defined, system specific way.

RP supports the invocation of such commands via the pre_exec and post_exec
keys for the CU descriptions.

Note

Pre- and Post- execution is performed on the resource headnode –
abuse of these commands for any compute or I/O heavy loads can lead to
serious consequences, and will likely draw the wrath of the system
administrators upon you! You have been warned…

The code example below exemplarily demonstrates the same environment setup we
have been using in an earlier section, but now rendered via an pre_exec
command:

cud = rp.ComputeUnitDescription()

cud.pre_exec = ['export TEST=jabberwocky']
cud.executable = '/bin/echo'
cud.arguments = ['$RP_UNIT_ID greets $TEST']

which again will make the environment variable TEST available during CU execution.

4.11.1. Running the Example

10_pre_and_post_exec.py.
uses the above blob to run a bag of echo commands:

[image: ../_images/10_pre_and_post_exec.png]

4.11.2. What’s Next?

The RP User-Guide concludes with this section. We recommend to check out the RP
API documentation next, and use it to write an RP application to run your own
workload. Ii is easiest to do so by starting off with the
canonical example, and
then add bits and pieces from the various user :ref:<chapter_user_guide>` sections as needed.

5. Examples

This chapter contains a set of more elaborate examples which demonstrate various
features of RADICAL-Pilot in more realistic environments.

Contents:

	5.1. Simple Bag-of-Tasks

	5.2. Chained Tasks

	5.3. Coupled Tasks

	5.4. MPI tasks

5.1. Simple Bag-of-Tasks

You might be wondering how to create your own RADICAL-Pilot script or how
RADICAL-Pilot can be useful for your needs. Before delving into the remote job
and data submission capabilities that RADICAL-Pilot has, its important to
understand the basics.

The simplest usage of a pilot-job system is to submit multiple identical tasks
(a ‘Bag of Tasks’ / ‘BoT’) collectively, i.e. as one big job! Such usage arises
for example to perform parameter sweep jobs, or to execute ensemble simulation.

We will create an example which submits N tasks using RADICAL-Pilot. The tasks are
all identical, except that they each record their number in their output. This
type of run is very useful if you are running many jobs using the same
executable (but perhaps with different input files). Rather than submit each job
individually to the queuing system and then wait for every job to become active individually, you submit just one container job (called the Pilot). When this pilot becomes active, it executes your tasks on the reserved cores. RADICAL-Pilot names such
tasks ‘Compute Units’, or short ‘CUs’.

5.1.1. Preparation

Download the file simple_bot.py with the following command:

curl -O https://raw.githubusercontent.com/radical-cybertools/radical.pilot/master/examples/docs/simple_bot.py

Open the file simple_bot.py with your favorite editor. The example should
work right out of the box on your local machine. However, if you want to try it
out with different resources, like remote HPC clusters, look for the sections
marked:

----- CHANGE THIS -- CHANGE THIS -- CHANGE THIS -- CHANGE THIS ------

and change the code below accordging to the instructions in the comments.

This assumes you have installed RADICAL-Pilot either globally or in a
Python virtualenv. You also need access to a MongoDB server.

Set the RADICAL_PILOT_DBURL environment variable in your shell to the
MongoDB server you want to use, for example:

export RADICAL_PILOT_DBURL=mongodb://<user>:<pass>@<mongodb_server>:27017/<database>

If RADICAL-Pilot is installed and the MongoDB URL is set, you should be good
to run your program (the database is created on the fly):

python simple_bot.py

The output should look something like this:

Initializing Pilot Manager ...
Submitting Compute Pilot to Pilot Manager ...
Initializing Unit Manager ...
Registering Compute Pilot with Unit Manager ...
Submit Compute Units to Unit Manager ...
Waiting for CUs to complete ...
...
Waiting for CUs to complete ...
All CUs completed!
Closed session, exiting now ...

5.1.2. Logging and Debugging

Since working with distributed systems is inherently complex and much of the
complexity is hidden within RADICAL-Pilot, it is necessary to do a lot of
internal logging. By default, logging output is disabled, but if something goes
wrong or if you’re just curious, you can enable the logging output by setting
the environment variable RADICAL_PILOT_VERBOSE to a value between CRITICAL
(print only critical messages) and DEBUG (print all messages). For more details
on logging, see under ‘Debugging’ in chapter Developer Documentation.

Give it a try with the above example:

RADICAL_PILOT_VERBOSE=DEBUG python simple_bot.py

5.2. Chained Tasks

What if you had two different executables – A and B, to run? What if this second set of
executables (B) had some dependencies on data from the first set (A)? Can you use one RADICAL-Pilot
to run both set jobs? Yes!

The example below submits a set of echo jobs (set A) using RADICAL-Pilot, and
for every successful job (with state DONE), it submits another job (set B)
to the same Pilot-Job.

We can think of A is being comprised of subjobs {a1,a2,a3}, while B is
comprised of subjobs {b1,b2,b3}. Rather than wait for each subjob {a1},{a2},{a3}
to complete, {b1} can run as soon as {a1} is complete, or {b1} can run as soon
as a slot becomes available – i.e. {a2} could finish before {a1}.

The code below demonstrates this behavior. As soon as there is a slot available
to run a job in B (i.e. a job in A has completed), it executes the job in B.
This keeps the RADICAL-Pilot throughput high.

5.2.1. Preparation

Download the file chained_tasks.py with the following command:

curl -O https://raw.githubusercontent.com/radical-cybertools/radical.pilot/master/examples/docs/chained_tasks.py

Open the file chained_tasks.py with your favorite editor. The example should
work right out of the box on your local machine. However, if you want to try it
out with different resources, like remote HPC clusters, look for the sections
marked:

----- CHANGE THIS -- CHANGE THIS -- CHANGE THIS -- CHANGE THIS ------

and change the code below accordging to the instructions in the comments.

5.2.2. Execution

This assumes you have installed RADICAL-Pilot either globally or in a
Python virtualenv. You also need access to a MongoDB server.

Set the RADICAL_PILOT_DBURL environment variable in your shell to the
MongoDB server you want to use, for example:

export RADICAL_PILOT_DBURL=mongodb://<user>:<pass>@<mongodb_server>:27017/

If RADICAL-Pilot is installed and the MongoDB URL is set, you should be good
to run your program:

python chained_tasks.py

5.3. Coupled Tasks

The script is a simple workflow which submits a set of tasks A and set of tasks B
and waits until they are completed before submiting a set of tasks C. It
demonstrates synchronization mechanisms provided by the Pilot-API. This example
is useful if a task in C has dependencies on some of the output generated
from tasks in A and B.

5.3.1. Preparation

Download the file coupled_tasks.py with the following command:

curl -O https://raw.githubusercontent.com/radical-cybertools/radical.pilot/master/examples/docs/coupled_tasks.py

Open the file coupled_tasks.py with your favorite editor. The example should
work right out of the box on your local machine. However, if you want to try it
out with different resources, like remote HPC clusters, look for the sections
marked:

----- CHANGE THIS -- CHANGE THIS -- CHANGE THIS -- CHANGE THIS ------

and change the code below accordging to the instructions in the comments.

You will need to make the necessary changes to coupled_tasks.py as you did
in the previous example. The important difference between this file and the
previous file is that there are three separate “USER DEFINED CU DESCRIPTION”
sections - numbered 1-3. Again, these two sections will not require any
modifications for the purposes of this tutorial. We will not review every
variable again, but instead, review the relationship between the 3 task
descriptions. The three task descriptions are identical except that they each
have a different CU_SET variable assigned - either A, B, or C.

NOTE that we call each task set the same number of times (i.e. NUMBER_JOBS) in
the tutorial code, but this is not a requirement. It just simplifies the code
for tutorial purposes. It is possible you want to run 16 A, 16 B, and then 32
C using the output from both A and B.

In this case, the important logic to draw your attention too is around line 140:

print "Waiting for 'A' and 'B' CUs to complete..."
umgr.wait_units()
print "Executing 'C' tasks now..."

In this example, we submit both the A and B tasks to the Pilot, but instead of
running C tasks right away, we call wait() on the unit manager. This tells
RADICAL-Pilot to wait for all of the submitted tasks to finish, before continuing in
the code. After all the A and B (submitted tasks) have finished, it then submits
the C tasks.

5.3.2. Execution

This assumes you have installed RADICAL-Pilot either globally or in a
Python virtualenv. You also need access to a MongoDB server.

Set the RADICAL_PILOT_DBURL environment variable in your shell to the
MongoDB server you want to use, for example:

export RADICAL_PILOT_DBURL=mongodb://<user>:<pass>@<mongodb_server>:27017/

If RADICAL-Pilot is installed and the MongoDB URL is set, you should be good
to run your program:

python coupled_tasks.py

5.4. MPI tasks

So far we have run a sequential tasks in a number of configurations.

This example introduces two new concepts: running multi-core MPI tasks
and specifying input data for the task, in this case a simple python MPI script.

5.4.1. Preparation

Download the file mpi_tasks.py with the following command:

curl -O https://raw.githubusercontent.com/radical-cybertools/radical.pilot/master/examples/docs/mpi_tasks.py

Open the file mpi_tasks.py with your favorite editor. The example might
work right out of the box on your local machine, this depends whether you
have a local MPI installation. However, if you want to try it out with
different resources, like remote HPC clusters, look for the sections marked:

----- CHANGE THIS -- CHANGE THIS -- CHANGE THIS -- CHANGE THIS ------

and change the code below according to the instructions in the comments.

This example makes use of an application that we first download to our own
environment and then have staged as input to the MPI tasks.

Download the file helloworld_mpi.py with the following command:

curl -O https://raw.githubusercontent.com/radical-cybertools/radical.pilot/master/examples/helloworld_mpi.py

5.4.2. Execution

** This assumes you have installed RADICAL-Pilot either globally or in a
Python virtualenv. You also need access to a MongoDB server.**

Set the RADICAL_PILOT_DBURL environment variable in your shell to the
MongoDB server you want to use, for example:

export RADICAL_PILOT_DBURL=mongodb://<user>:<pass>@<mongodb_server>:27017/

If RADICAL-Pilot is installed and the MongoDB URL is set, you should be good
to run your program:

python mpi_tasks.py

The output should look something like this:

Initializing Pilot Manager ...
Submitting Compute Pilot to Pilot Manager ...
Initializing Unit Manager ...
Registering Compute Pilot with Unit Manager ...
Submit Compute Units to Unit Manager ...
Waiting for CUs to complete ...
...
Waiting for CUs to complete ...
All CUs completed successfully!
Closed session, exiting now ...

5.4.3. Logging and Debugging

Since working with distributed systems is inherently complex and much of the
complexity is hidden within RADICAL-Pilot, it is necessary to do a lot of
internal logging. By default, logging output is disabled, but if something goes
wrong or if you’re just curious, you can enable the logging output by setting
the environment variable RADICAL_PILOT_VERBOSE to a value between CRITICAL
(print only critical messages) and DEBUG (print all messages).

Give it a try with the above example:

RADICAL_PILOT_VERBOSE=DEBUG python simple_bot.py

6. API Reference

6.1. Sessions and Security Contexts

6.1.1. Sessions

	
class radical.pilot.Session(dburl=None, uid=None, cfg=None, _connect=True)

	A Session encapsulates a RADICAL-Pilot instance and is the root object

A Session holds radical.pilot.PilotManager and
radical.pilot.UnitManager instances which in turn hold
radical.pilot.ComputePilot and radical.pilot.ComputeUnit
instances.

	
__init__(dburl=None, uid=None, cfg=None, _connect=True)

	Creates a new session. A new Session instance is created and
stored in the database.

	Arguments:

	
	dburl (string): The MongoDB URL. If none is given,
RP uses the environment variable RADICAL_PILOT_DBURL. If that is
not set, an error will be raises.

	uid (string): Create a session with this UID.
Only use this when you know what you are doing!

	Returns:

	
	A new Session instance.

	Raises:

	
	radical.pilot.DatabaseError

	
close(cleanup=False, terminate=True, download=False)

	Closes the session.

All subsequent attempts access objects attached to the session will
result in an error. If cleanup is set to True (default) the session
data is removed from the database.

	Arguments:

	
	cleanup (bool): Remove session from MongoDB (implies * terminate)

	terminate (bool): Shut down all pilots associated with the session.

	Raises:

	
	radical.pilot.IncorrectState if the session is closed
or doesn’t exist.

	
as_dict()

	Returns a Python dictionary representation of the object.

	
created

	Returns the UTC date and time the session was created.

	
connected

	Returns the most recent UTC date and time the session was
reconnected to.

	
closed

	Returns the time of closing

	
inject_metadata(metadata)

	Insert (experiment) metadata into an active session
RP stack version info always get added.

	
list_pilot_managers()

	Lists the unique identifiers of all radical.pilot.PilotManager
instances associated with this session.

	Returns:

	
	A list of radical.pilot.PilotManager uids (list of strings).

	
get_pilot_managers(pmgr_uids=None)

	returns known PilotManager(s).

Arguments:

	pmgr_uids [string]:
unique identifier of the PilotManager we want

	Returns:

	
	One or more [radical.pilot.PilotManager] objects.

	
list_unit_managers()

	Lists the unique identifiers of all radical.pilot.UnitManager
instances associated with this session.

	Returns:

	
	A list of radical.pilot.UnitManager uids (list of strings).

	
get_unit_managers(umgr_uids=None)

	returns known UnitManager(s).

Arguments:

	umgr_uids [string]:
unique identifier of the UnitManager we want

	Returns:

	
	One or more [radical.pilot.UnitManager] objects.

	
list_resources()

	Returns a list of known resource labels which can be used in a pilot
description. Not that resource aliases won’t be listed.

	
add_resource_config(resource_config)

	Adds a new radical.pilot.ResourceConfig to the PilotManager’s
dictionary of known resources, or accept a string which points to
a configuration file.

For example:

rc = radical.pilot.ResourceConfig(label="mycluster")
rc.job_manager_endpoint = "ssh+pbs://mycluster
rc.filesystem_endpoint = "sftp://mycluster
rc.default_queue = "private"
rc.bootstrapper = "default_bootstrapper.sh"

pm = radical.pilot.PilotManager(session=s)
pm.add_resource_config(rc)

pd = radical.pilot.ComputePilotDescription()
pd.resource = "mycluster"
pd.cores = 16
pd.runtime = 5 # minutes

pilot = pm.submit_pilots(pd)

	
get_resource_config(resource, schema=None)

	Returns a dictionary of the requested resource config

6.1.2. Security Contexts

	
class radical.pilot.Context(ctype, thedict=None)

	
	
__init__(ctype, thedict=None)

	ctype: string
ret: None

	
classmethod from_dict(thedict)

	Creates a new object instance from a string.
c._from_dict(x.as_dict) == x

6.2. Pilots and PilotManagers

6.2.1. PilotManagers

	
class radical.pilot.PilotManager(session)

	A PilotManager manages radical.pilot.ComputePilot instances that are
submitted via the radical.pilot.PilotManager.submit_pilots() method.

It is possible to attach one or more Using Local and Remote HPC Resources
to a PilotManager to outsource machine specific configuration
parameters to an external configuration file.

Example:

s = radical.pilot.Session(database_url=DBURL)

pm = radical.pilot.PilotManager(session=s)

pd = radical.pilot.ComputePilotDescription()
pd.resource = "futuregrid.alamo"
pd.cpus = 16

p1 = pm.submit_pilots(pd) # create first pilot with 16 cores
p2 = pm.submit_pilots(pd) # create second pilot with 16 cores

Create a workload of 128 '/bin/sleep' compute units
compute_units = []
for unit_count in range(0, 128):
 cu = radical.pilot.ComputeUnitDescription()
 cu.executable = "/bin/sleep"
 cu.arguments = ['60']
 compute_units.append(cu)

Combine the two pilots, the workload and a scheduler via
a UnitManager.
um = radical.pilot.UnitManager(session=session,
 scheduler=radical.pilot.SCHEDULER_ROUND_ROBIN)
um.add_pilot(p1)
um.submit_units(compute_units)

The pilot manager can issue notification on pilot state changes. Whenever
state notification arrives, any callback registered for that notification is
fired.

NOTE: State notifications can arrive out of order wrt the pilot state model!

	
__init__(session)

	Creates a new PilotManager and attaches is to the session.

	Arguments:

	
	session [radical.pilot.Session]:
The session instance to use.

	Returns:

	
	A new PilotManager object [radical.pilot.PilotManager].

	
close(terminate=True)

	Shuts down the PilotManager.

	Arguments:

	
	terminate [bool]: cancel non-final pilots if True (default)

	
is_valid(term=True)

	Just as the Process’ is_valid() call, we make sure that the component
is still viable, and will raise an exception if not. Additionally to
the health of the component’s child process, we also check health of any
sub-components and communication bridges.

	
as_dict()

	Returns a dictionary representation of the PilotManager object.

	
uid

	Returns the unique id.

	
list_pilots()

	Returns the UIDs of the radical.pilot.ComputePilots managed by
this pilot manager.

	Returns:

	
	A list of radical.pilot.ComputePilot UIDs [string].

	
submit_pilots(descriptions)

	Submits on or more radical.pilot.ComputePilot instances to the
pilot manager.

	Arguments:

	
	descriptions [radical.pilot.ComputePilotDescription
or list of radical.pilot.ComputePilotDescription]: The
description of the compute pilot instance(s) to create.

	Returns:

	
	A list of radical.pilot.ComputePilot objects.

	
get_pilots(uids=None)

	Returns one or more compute pilots identified by their IDs.

	Arguments:

	
	uids [string or list of strings]: The IDs of the
compute pilot objects to return.

	Returns:

	
	A list of radical.pilot.ComputePilot objects.

	
wait_pilots(uids=None, state=None, timeout=None)

	Returns when one or more radical.pilot.ComputePilots reach a
specific state.

If pilot_uids is None, wait_pilots returns when all
ComputePilots reach the state defined in state. This may include
pilots which have previously terminated or waited upon.

Example:

TODO -- add example

Arguments:

	pilot_uids [string or list of strings]
If pilot_uids is set, only the ComputePilots with the specified
uids are considered. If pilot_uids is None (default), all
ComputePilots are considered.

	state [string]
The state that ComputePilots have to reach in order for the call
to return.

By default wait_pilots waits for the ComputePilots to
reach a terminal state, which can be one of the following:

	radical.pilot.rps.DONE

	radical.pilot.rps.FAILED

	radical.pilot.rps.CANCELED

	timeout [float]
Timeout in seconds before the call returns regardless of Pilot
state changes. The default value None waits forever.

	
cancel_pilots(uids=None, _timeout=None)

	Cancel one or more radical.pilot.ComputePilots.

	Arguments:

	
	uids [string or list of strings]: The IDs of the
compute pilot objects to cancel.

	
register_callback(cb, metric='PILOT_STATE', cb_data=None)

	Registers a new callback function with the PilotManager. Manager-level
callbacks get called if the specified metric changes. The default
metric PILOT_STATE fires the callback if any of the ComputePilots
managed by the PilotManager change their state.

All callback functions need to have the same signature:

def cb(obj, value, cb_data)

where object is a handle to the object that triggered the callback,
value is the metric, and data is the data provided on
callback registration.. In the example of PILOT_STATE above, the
object would be the pilot in question, and the value would be the new
state of the pilot.

Available metrics are:

	PILOT_STATE: fires when the state of any of the pilots which are
managed by this pilot manager instance is changing. It communicates
the pilot object instance and the pilots new state.

6.2.2. ComputePilotDescription

	
class radical.pilot.ComputePilotDescription(from_dict=None)

	A ComputePilotDescription object describes the requirements and properties
of a radical.pilot.Pilot and is passed as a parameter to
radical.pilot.PilotManager.submit_pilots() to instantiate and run
a new pilot.

Note

A ComputePilotDescription MUST define at least
resource, cores and runtime.

Example:

pm = radical.pilot.PilotManager(session=s)

pd = radical.pilot.ComputePilotDescription()
pd.resource = "local.localhost" # defined in futuregrid.json
pd.cores = 16
pd.runtime = 5 # minutes

pilot = pm.submit_pilots(pd)

	
resource

	[Type: string] [`mandatory`] The key of a
Using Local and Remote HPC Resources entry.
If the key exists, the machine-specifc configuration is loaded from the
configuration once the ComputePilotDescription is passed to
radical.pilot.PilotManager.submit_pilots(). If the key doesn’t exist,
a radical.pilot.pilotException is thrown.

	
access_schema

	[Type: string] [`optional`] The key of an access mechanism to use.
The valid access mechanism are defined in the resource configurations,
see Using Local and Remote HPC Resources. The first one defined there is used by
default, if no other is specified.

	
runtime

	[Type: int] [mandatory] The maximum run time (wall-clock time) in
minutes of the ComputePilot.

	
sandbox

	[Type: string] [optional] The working (“sandbox”) directory of the
ComputePilot agent. This parameter is optional. If not set, it defaults
to radical.pilot.sandox in your home or login directory.

Warning

If you define a ComputePilot on an HPC cluster and you want
to set sandbox manually, make sure that it points to a
directory on a shared filesystem that can be reached from all
compute nodes.

	
cores

	[Type: int] [mandatory] The number of cores the pilot should
allocate on the target resource.

NOTE: for local pilots, you can set a number larger than the physical
machine limit when setting RADICAL_PILOT_PROFILE in your environment.

	
memory

	[Type: int] [optional] The amount of memorty (in MB) the pilot
should allocate on the target resource.

	
queue

	[Type: string] [optional] The name of the job queue the pilot should
get submitted to . If queue is defined in the resource configuration
(resource) defining queue will override it explicitly.

	
project

	[Type: string] [optional] The name of the project / allocation to
charge for used CPU time. If project is defined in the machine
configuration (resource), defining project will
override it explicitly.

	
candidate_hosts

	[Type: list] [optional] The list of names of hosts where this pilot
is allowed to start on.

	
cleanup

	[Type: bool] [optional] If cleanup is set to True, the pilot will
delete its entire sandbox upon termination. This includes individual
ComputeUnit sandboxes and all generated output data. Only log files will
remain in the sandbox directory.

6.2.3. Pilots

	
class radical.pilot.ComputePilot(pmgr, descr)

	A ComputePilot represent a resource overlay on a local or remote resource.

Note

A ComputePilot cannot be created directly. The factory method
radical.pilot.PilotManager.submit_pilots() has to be used instead.

Example:

pm = radical.pilot.PilotManager(session=s)

pd = radical.pilot.ComputePilotDescription()
pd.resource = "local.localhost"
pd.cores = 2
pd.runtime = 5 # minutes

pilot = pm.submit_pilots(pd)

	
as_dict()

	Returns a Python dictionary representation of the object.

	
session

	Returns the pilot’s session.

	Returns:

	
	A Session.

	
pmgr

	Returns the pilot’s manager.

	Returns:

	
	A PilotManager.

	
resource_details

	Returns agent level resource information

	
uid

	Returns the pilot’s unique identifier.

The uid identifies the pilot within a PilotManager.

	Returns:

	
	A unique identifier (string).

	
state

	Returns the current state of the pilot.

	Returns:

	
	state (string enum)

	
log

	Returns a list of human readable [timestamp, string] tuples describing
various events during the pilot’s lifetime. Those strings are not
normative, only informative!

	Returns:

	
	log (list of [timestamp, string] tuples)

	
stdout

	Returns a snapshot of the pilot’s STDOUT stream.

If this property is queried before the pilot has reached
‘DONE’ or ‘FAILED’ state it will return None.

	Returns:

	
	stdout (string)

	
stderr

	Returns a snapshot of the pilot’s STDERR stream.

If this property is queried before the pilot has reached
‘DONE’ or ‘FAILED’ state it will return None.

	Returns:

	
	stderr (string)

	
resource

	Returns the resource tag of this pilot.

	Returns:

	
	A resource tag (string)

	
pilot_sandbox

	Returns the full sandbox URL of this pilot, if that is already
known, or ‘None’ otherwise.

	Returns:

	
	A string

	
description

	Returns the description the pilot was started with, as a dictionary.

	Returns:

	
	description (dict)

	
register_callback(cb, metric='PILOT_STATE', cb_data=None)

	Registers a callback function that is triggered every time the
pilot’s state changes.

All callback functions need to have the same signature:

def cb(obj, state)

where object is a handle to the object that triggered the callback
and state is the new state of that object. If ‘cb_data’ is given,
then the ‘cb’ signature changes to

def cb(obj, state, cb_data)

and ‘cb_data’ are passed along.

	
wait(state=None, timeout=None)

	Returns when the pilot reaches a specific state or
when an optional timeout is reached.

Arguments:

	state [list of strings]
The state(s) that pilot has to reach in order for the
call to return.

By default wait waits for the pilot to reach a final
state, which can be one of the following:

	radical.pilot.states.DONE

	radical.pilot.states.FAILED

	radical.pilot.states.CANCELED

	timeout [float]
Optional timeout in seconds before the call returns regardless
whether the pilot has reached the desired state or not. The
default value None never times out.

	
cancel()

	Cancel the pilot.

	
stage_in(directives)

	Stages the content of the staging directive into the pilot’s
staging area

6.3. ComputeUnits and UnitManagers

6.3.1. UnitManager

	
class radical.pilot.UnitManager(session, scheduler=None)

	A UnitManager manages radical.pilot.ComputeUnit instances which
represent the executable workload in RADICAL-Pilot. A UnitManager
connects the ComputeUnits with one or more Pilot instances (which
represent the workload executors in RADICAL-Pilot) and a scheduler
which determines which ComputeUnit gets executed on which
Pilot.

Example:

s = rp.Session(database_url=DBURL)

pm = rp.PilotManager(session=s)

pd = rp.ComputePilotDescription()
pd.resource = "futuregrid.alamo"
pd.cores = 16

p1 = pm.submit_pilots(pd) # create first pilot with 16 cores
p2 = pm.submit_pilots(pd) # create second pilot with 16 cores

Create a workload of 128 '/bin/sleep' compute units
compute_units = []
for unit_count in range(0, 128):
 cu = rp.ComputeUnitDescription()
 cu.executable = "/bin/sleep"
 cu.arguments = ['60']
 compute_units.append(cu)

Combine the two pilots, the workload and a scheduler via
a UnitManager.
um = rp.UnitManager(session=session,
 scheduler=rp.SCHEDULER_ROUND_ROBIN)
um.add_pilot(p1)
um.submit_units(compute_units)

The unit manager can issue notification on unit state changes. Whenever
state notification arrives, any callback registered for that notification is
fired.

NOTE: State notifications can arrive out of order wrt the unit state model!

	
__init__(session, scheduler=None)

	Creates a new UnitManager and attaches it to the session.

	Arguments:

	
	session [radical.pilot.Session]:
The session instance to use.

	scheduler (string):
The name of the scheduler plug-in to use.

	Returns:

	
	A new UnitManager object [radical.pilot.UnitManager].

	
close()

	Shut down the UnitManager, and all umgr components.

	
is_valid(term=True)

	Just as the Process’ is_valid() call, we make sure that the component
is still viable, and will raise an exception if not. Additionally to
the health of the component’s child process, we also check health of any
sub-components and communication bridges.

	
as_dict()

	Returns a dictionary representation of the UnitManager object.

	
uid

	Returns the unique id.

	
scheduler

	Returns the scheduler name.

	
add_pilots(pilots)

	Associates one or more pilots with the unit manager.

Arguments:

	pilots [radical.pilot.ComputePilot or list of
radical.pilot.ComputePilot]: The pilot objects that will be
added to the unit manager.

	
list_pilots()

	Lists the UIDs of the pilots currently associated with the unit manager.

	Returns:

	
	A list of radical.pilot.ComputePilot UIDs [string].

	
get_pilots()

	Get the pilots instances currently associated with the unit manager.

	Returns:

	
	A list of radical.pilot.ComputePilot instances.

	
remove_pilots(pilot_ids, drain=False)

	Disassociates one or more pilots from the unit manager.

After a pilot has been removed from a unit manager, it won’t process
any of the unit manager’s units anymore. Calling remove_pilots
doesn’t stop the pilot itself.

Arguments:

	drain [boolean]: Drain determines what happens to the units
which are managed by the removed pilot(s). If True, all units
currently assigned to the pilot are allowed to finish execution.
If False (the default), then non-final units will be canceled.

	
list_units()

	Returns the UIDs of the radical.pilot.ComputeUnit managed by
this unit manager.

	Returns:

	
	A list of radical.pilot.ComputeUnit UIDs [string].

	
submit_units(descriptions)

	Submits on or more radical.pilot.ComputeUnit instances to the
unit manager.

	Arguments:

	
	descriptions [radical.pilot.ComputeUnitDescription
or list of radical.pilot.ComputeUnitDescription]: The
description of the compute unit instance(s) to create.

	Returns:

	
	A list of radical.pilot.ComputeUnit objects.

	
get_units(uids=None)

	Returns one or more compute units identified by their IDs.

	Arguments:

	
	uids [string or list of strings]: The IDs of the
compute unit objects to return.

	Returns:

	
	A list of radical.pilot.ComputeUnit objects.

	
wait_units(uids=None, state=None, timeout=None)

	Returns when one or more radical.pilot.ComputeUnits reach a
specific state.

If uids is None, wait_units returns when all
ComputeUnits reach the state defined in state. This may include
units which have previously terminated or waited upon.

Example:

TODO -- add example

Arguments:

	uids [string or list of strings]
If uids is set, only the ComputeUnits with the specified
uids are considered. If uids is None (default), all
ComputeUnits are considered.

	state [string]
The state that ComputeUnits have to reach in order for the call
to return.

By default wait_units waits for the ComputeUnits to
reach a terminal state, which can be one of the following:

	radical.pilot.rps.DONE

	radical.pilot.rps.FAILED

	radical.pilot.rps.CANCELED

	timeout [float]
Timeout in seconds before the call returns regardless of Pilot
state changes. The default value None waits forever.

	
cancel_units(uids=None)

	Cancel one or more radical.pilot.ComputeUnits.

Note that cancellation of units is immediate, i.e. their state is
immediately set to CANCELED, even if some RP component may still
operate on the units. Specifically, other state transitions, including
other final states (DONE, FAILED) can occur after cancellation.
This is a side effect of an optimization: we consider this
acceptable tradeoff in the sense “Oh, that unit was DONE at point of
cancellation – ok, we can use the results, sure!”.

If that behavior is not wanted, set the environment variable:

export RADICAL_PILOT_STRICT_CANCEL=True

	Arguments:

	
	uids [string or list of strings]: The IDs of the
compute units objects to cancel.

	
register_callback(cb, metric='UNIT_STATE', cb_data=None)

	Registers a new callback function with the UnitManager. Manager-level
callbacks get called if the specified metric changes. The default
metric UNIT_STATE fires the callback if any of the ComputeUnits
managed by the PilotManager change their state.

All callback functions need to have the same signature:

def cb(obj, value, cb_data)

where object is a handle to the object that triggered the callback,
value is the metric, and data is the data provided on
callback registration.. In the example of UNIT_STATE above, the
object would be the unit in question, and the value would be the new
state of the unit.

Available metrics are:

	UNIT_STATE: fires when the state of any of the units which are
managed by this unit manager instance is changing. It communicates
the unit object instance and the units new state.

	WAIT_QUEUE_SIZE: fires when the number of unscheduled units (i.e.
of units which have not been assigned to a pilot for execution)
changes.

6.3.2. ComputeUnitDescription

	
class radical.pilot.ComputeUnitDescription(from_dict=None)

	A ComputeUnitDescription object describes the requirements and properties
of a radical.pilot.ComputeUnit and is passed as a parameter to
radical.pilot.UnitManager.submit_units() to instantiate and run
a new unit.

Note

A ComputeUnitDescription MUST define at least an
executable or kernel – all other elements are optional.

Example:

TODO

	
executable

	The executable to launch (string). The executable is expected to be
either available via $PATH on the target resource, or to be an absolute
path.

default: None

	
cpu_processes

	
number of application processes to start on CPU cores

	
default: 0

	

	
cpu_threads

	
number of threads each process will start on CPU cores

	
default: 1

	

	
cpu_process_type

	
process type, determines startup method (POSIX, MPI)

	
default: POSIX

	

	
cpu_thread_type

	
thread type, influences startup and environment (POSIX, OpenMP)

	
default: POSIX

	

	
gpu_processes

	
number of application processes to start on GPU cores

	
default: 0

	

	
gpu_threads

	
number of threads each process will start on GPU cores

	
default: 1

	

	
gpu_process_type

	
process type, determines startup method (POSIX, MPI)

	
default: POSIX

	

	
gpu_thread_type

	
thread type, influences startup and environment (POSIX, OpenMP, CUDA)

	
default: POSIX

	

	
lfs(local file storage)

	
amount of data (MB) required on the local file system of the node

	
default: 0

	

	
name

	A descriptive name for the compute unit (string). This attribute can
be used to map individual units back to application level workloads.

default: None

	
arguments

	The command line arguments for the given executable (list of
strings).

default: []

	
environment

	Environment variables to set in the environment before execution
(dict).

default: {}

	
stdout

	The name of the file to store stdout in (string).

default: STDOUT

	
stderr

	The name of the file to store stderr in (string).

default: STDERR

	
input_staging

	The files that need to be staged before execution (list of staging
directives, see below).

default: {}

	
output_staging

	The files that need to be staged after execution (list of staging
directives, see below).

default: {}

	
pre_exec

	Actions (shell commands) to perform before this task starts (list of
strings). Note that the set of shell commands given here are expected
to load environments, check for work directories and data, etc. They are
not expected to consume any significant amount of CPU time or other
resources! Deviating from that rule will likely result in reduced
overall throughput.

No assumption should be made as to where these commands are executed
(although RP attempts to perform them in the unit’s execution
environment).

No assumption should be made on the specific shell environment the
commands are executed in.

Errors in executing these commands will result in the unit to enter
FAILED state, and no execution of the actual workload will be
attempted.

default: []

	
post_exec

	Actions (shell commands) to perform after this task finishes (list of
strings). The same remarks as on pre_exec apply, inclusive the point
on error handling, which again will cause the unit to fail, even if the
actual execution was successful..

default: []

	
kernel

	Name of a simulation kernel which expands to description attributes once
the unit is scheduled to a pilot (and resource).

Note

TODO: explain in detail, reference ENMDTK.

default: None

	
restartable

	If the unit starts to execute on a pilot, but cannot finish because the
pilot fails or is canceled, can the unit be restarted on a different
pilot / resource?

default: False

	
metadata

	user defined metadata

default: None

	
cleanup

	If cleanup (a bool) is set to True, the pilot will delete the entire
unit sandbox upon termination. This includes all generated output data in
that sandbox. Output staging will be performed before cleanup.

Note that unit sandboxes are also deleted if the pilot’s own cleanup
flag is set.

default: False

	
pilot

	If specified as string (pilot uid), the unit is submitted to the pilot
with the given ID. If that pilot is not known to the unit manager, an
exception is raised.

The Staging Directives are specified using a dict in the following form:

	staging_directive = {

	‘source’ : None, # see ‘Location’ below
‘target’ : None, # see ‘Location’ below
‘action’ : None, # See ‘Action operators’ below
‘flags’ : None, # See ‘Flags’ below
‘priority’: 0 # Control ordering of actions (unused)

}

source and target locations can be given as strings or ru.URL
instances. Strings containing :// are converted into URLs immediately.
Otherwise they are considered absolute or relative paths and are then
interpreted in the context of the client’s working directory.

RP accepts the following special URL schemas:

	client:// : relative to the client’s working directory

	resource://: relative to the RP sandbox on the target resource

	pilot:// : relative to the pilot sandbox on the target resource

	unit:// : relative to the unit sandbox on the target resource

In all these cases, the hostname element of the URL is expected to be
empty, and the path is always considered relative to the locations
specified above (even though URLs usually don’t have a notion of relative
paths).

RP accepts the following action operators:

	rp.TRANSFER: remote file transfer from source URL to target URL.

	rp.COPY : local file copy, ie. not crossing host boundaries

	rp.MOVE : local file move

	rp.LINK : local file symlink

rp.CREATE_PARENTS: create the directory hierarchy for targets on the fly
rp.RECURSIVE : if source is a directory, handle it recursively

	
verify()

	Verify that the description is syntactically and semantically correct.
This method encapsulates checks beyond the SAGA attribute level checks.

6.3.3. ComputeUnit

	
class radical.pilot.ComputeUnit(umgr, descr)

	A ComputeUnit represent a ‘task’ that is executed on a ComputePilot.
ComputeUnits allow to control and query the state of this task.

Note

A unit cannot be created directly. The factory method
radical.pilot.UnitManager.submit_units() has to be used instead.

Example:

umgr = radical.pilot.UnitManager(session=s)

ud = radical.pilot.ComputeUnitDescription()
ud.executable = "/bin/date"

unit = umgr.submit_units(ud)

	
as_dict()

	Returns a Python dictionary representation of the object.

	
session

	Returns the unit’s session.

	Returns:

	
	A Session.

	
umgr

	Returns the unit’s manager.

	Returns:

	
	A UnitManager.

	
uid

	Returns the unit’s unique identifier.

The uid identifies the unit within a UnitManager.

	Returns:

	
	A unique identifier (string).

	
name

	Returns the unit’s application specified name.

	Returns:

	
	A name (string).

	
state

	Returns the current state of the unit.

	Returns:

	
	state (string enum)

	
exit_code

	Returns the exit code of the unit, if that is already known, or
‘None’ otherwise.

	Returns:

	
	exit code (int)

	
stdout

	Returns a snapshot of the executable’s STDOUT stream.

If this property is queried before the unit has reached
‘DONE’ or ‘FAILED’ state it will return None.

	Returns:

	
	stdout (string)

	
stderr

	Returns a snapshot of the executable’s STDERR stream.

If this property is queried before the unit has reached
‘DONE’ or ‘FAILED’ state it will return None.

	Returns:

	
	stderr (string)

	
pilot

	Returns the pilot ID of this unit, if that is already known, or
‘None’ otherwise.

	Returns:

	
	A pilot ID (string)

	
unit_sandbox

	Returns the full sandbox URL of this unit, if that is already
known, or ‘None’ otherwise.

	Returns:

	
	A URL (radical.utils.Url).

	
description

	Returns the description the unit was started with, as a dictionary.

	Returns:

	
	description (dict)

	
metadata

	Returns the metadata field of the unit’s description

	
register_callback(cb, cb_data=None)

	Registers a callback function that is triggered every time the
unit’s state changes.

All callback functions need to have the same signature:

def cb(obj, state)

where object is a handle to the object that triggered the callback
and state is the new state of that object. If ‘cb_data’ is given,
then the ‘cb’ signature changes to

def cb(obj, state, cb_data)

and ‘cb_data’ are passed along.

	
wait(state=None, timeout=None)

	Returns when the unit reaches a specific state or
when an optional timeout is reached.

Arguments:

	state [list of strings]
The state(s) that unit has to reach in order for the
call to return.

By default wait waits for the unit to reach a final
state, which can be one of the following:

	radical.pilot.states.DONE

	radical.pilot.states.FAILED

	radical.pilot.states.CANCELED

	timeout [float]
Optional timeout in seconds before the call returns regardless
whether the unit has reached the desired state or not. The
default value None never times out.

	
cancel()

	Cancel the unit.

6.4. Exceptions

	
class radical.pilot.PilotException(msg, obj=None)

	
	Parameters

	
	msg (string) – Error message, indicating the cause for the exception
being raised.

	obj (object [https://docs.python.org/3/library/functions.html#object]) – RADICAL-Pilot object on whose activity the exception was raised.

	Raises

	–

The base class for all RADICAL-Pilot Exception classes – this exception type is
never raised directly, but can be used to catch all RADICAL-Pilot exceptions within
a single except clause.

The exception message and originating object are also accessable as class
attributes (e.object() and e.message()). The __str__()
operator redirects to get_message().

	
get_object()

	Return the object instance on whose activity the exception was raised.

	
get_message()

	Return the error message associated with the exception

	
class radical.pilot.DatabaseError(msg, obj=None)

	TODO: Document me!

7. Data Staging

Note

Currently RADICAL-Pilot only supports data on file abstraction
level, so data == files at this moment.

Many, if not all, programs require input data to operate and create output
data as a result in some form or shape.
RADICAL-Pilot has a set of constructs that allows the user to specify the
required staging of input and output files for a Compute Unit.

The primary constructs are on the level of the Compute Unit (Description)
which are discussed in the next section.
For more elaborate use-cases we also have constructs on the Compute Pilot
level, which are discussed later in this chapter.

Note

RADICAL-Pilot uses system calls for local file operations and SAGA for
remote transfers and URL specification.

7.1. Compute Unit I/O

To instruct RADICAL-Pilot to handle files for you, there are two things to
take care of.
First you need to specify the respective input and output files for the
Compute Unit in so called staging directives.
Additionally you need to associate these staging directives to the the
Compute Unit by means of the input_staging and output_staging members.

7.1.1. What it looks like

The following code snippet shows this in action:

INPUT_FILE_NAME = "INPUT_FILE.TXT"
OUTPUT_FILE_NAME = "OUTPUT_FILE.TXT"

This executes: "/usr/bin/sort -o OUTPUT_FILE.TXT INPUT_FILE.TXT"
cud = radical.pilot.ComputeUnitDescription()
cud.executable = "/usr/bin/sort"
cud.arguments = ["-o", OUTPUT_FILE_NAME, INPUT_FILE_NAME]
cud.input_staging = INPUT_FILE_NAME
cud.output_staging = OUTPUT_FILE_NAME

Here the staging directives INPUT_FILE_NAME and OUTPUT_FILE_NAME
are simple strings that both specify a single filename and are associated to
the Compute Unit Description cud for input and output respectively.

What this does is that the file INPUT_FILE.TXT is transferred from the local
directory to the directory where the task is executed. After the task has run,
the file OUTPUT_FILE.TXT that has been created by the task, will be
transferred back to the local directory.

The String-Based Input and Output Transfer example demonstrates this in full glory.

7.1.2. Staging Directives

The format of the staging directives can either be a string as above or a
dict of the following structure:

staging_directive = {
 'source': source, # radical.pilot.Url() or string (MANDATORY).
 'target': target, # radical.pilot.Url() or string (OPTIONAL).
 'action': action, # One of COPY, LINK, MOVE, TRANSFER or TARBALL (OPTIONAL).
 'flags': flags, # Zero or more of CREATE_PARENTS or SKIP_FAILED (OPTIONAL).
 'priority': priority # A number to instruct ordering (OPTIONAL).
}

The semantics of the keys from the dict are as follows:

	
	source (default: None) and target (default: os.path.basename(source)):

	In case of the staging directive being used for input,
then the source refers to the location to get the input files
from, e.g. the local working directory on your laptop or a remote
data repository, and target refers to the working directory of
the ComputeUnit. Alternatively, in case of the staging directive
being used for output, then the source refers to the output
files being generated by the ComputeUnit in the working directory
and target refers to the location where you need to store the
output data, e.g. back to your laptop or some remote data repository.

	
	action (default: TRANSFER):

	The ultimate goal is to make data available to the application
kernel in the ComputeUnit and to be able to make the results
available for further use.
Depending on the relative location of the working directory of the
source to the target location, the action can be COPY
(local resource), LINK (same file system),
MOVE (local resource), TRANSFER (to a remote resource), or
TARBALL (transfer to a remote resource after tarring files).

	
	flags (default: [CREATE_PARENTS, SKIP_FAILED]):

	By passing certain flags we can influence the behavior of the action.
Available flags are:

	CREATE_PARENTS: Create parent directories while writing file.

	SKIP_FAILED: Don’t stage out files if tasks failed.

In case of multiple values these can be passed as a list.

	
	priority (default: 0):

	This optional field can be used to instruct the backend to priority
the actions on the staging directives. E.g. to first stage the
output that is required for immediate further analysis and afterwards
some output files that are of secondary concern.

The Dictionary-Based Input and Output Transfer example demonstrates this in full glory.

When the staging directives are specified as a string as we did earlier,
that implies a staging directive where the source and the target
are equal to the content of the string, the action is set to the default
action TRANSFER, the flags are set to the default flags
CREATE_PARENTS and SKIP_FAILED, and the priority is set to the
default value 0:

'INPUT_FILE.TXT' == {
 'source': 'INPUT_FILE.TXT',
 'target': 'INPUT_FILE.TXT',
 'action': TRANSFER,
 'flags': [CREATE_PARENTS, SKIP_FAILED],
 'priority': 0
}

7.1.3. Staging Area

As the pilot job creates an abstraction for a computational resource,
the user does not necessarily know where the working directory of the Compute
Pilot or the Compute Unit is.
Even if he knows, the user might not have direct access to it.
For this situation we have the staging area, which is a special construct so
that the user can specify files relative to or in the working directory
without knowing the exact location. This can be done using the following
URL format:

'staging:///INPUT_FILE.TXT'

The Pipeline example demonstrates this in full glory.

7.2. Compute Pilot I/O

As mentioned earlier, in addition to the constructs on Compute Unit-level
RADICAL-Pilot also has constructs on Compute Pilot-level.
The main rationale for this is that often there is (input) data to be shared
between multiple Compute Units.
Instead of transferring the same files for every Compute Unit,
we can transfer the data once to the Pilot, and then make it available to
every Compute Unit that needs it.

This works in a similar way as the Compute Unit-IO, where we use also use
the Staging Directive to specify the I/O transaction
The difference is that in this case, the Staging Directive is not associated
to the Description, but used in a direct method call pilot.stage_in(sd_pilot).

Configure the staging directive for to insert the shared file into
the pilot staging directory.
sd_pilot = {'source': shared_input_file_url,
 'target': os.path.join(MY_STAGING_AREA, SHARED_INPUT_FILE),
 'action': radical.pilot.TRANSFER
}
Synchronously stage the data to the pilot
pilot.stage_in(sd_pilot)

The Shared Input Files example demonstrates this in full glory.

Note

The call to stage_in() is synchronous and will return once the
transfer is complete.

7.3. Examples

Note

All of the following examples are configured to run on localhost,
but they can be easily changed to run on a remote resource by
modifying the resource specification in the Compute Pilot Description.
Also note the comments in Staging Area when changing the
examples to a remote target.

These examples require an installation of RADICAL-Pilot of course.
There are download links for each of the examples.

7.3.1. String-Based Input and Output Transfer

This example demonstrates the simplest form of the data staging capabilities.
The example demonstrates how a local input file is staged through
RADICAL-Pilot, processed by the Compute Unit and the resulting output file
is staged back to the local environment.

Note

Download the example:

curl -O https://raw.githubusercontent.com/radical-cybertools/radical.pilot/readthedocs/examples/io_staging_simple.py

7.3.2. Dictionary-Based Input and Output Transfer

This example demonstrates the use of the staging directives structure to
have more control over the staging behavior.
The flow of the example is similar to that of the previous example,
but here we show that by using the dict-based Staging Directive,
one can specify different names and paths for the local and remote files,
a feature that is often required in real-world applications.

Note

Download the example:

curl -O https://raw.githubusercontent.com/radical-cybertools/radical.pilot/readthedocs/examples/io_staging_dict.py

7.3.3. Shared Input Files

This example demonstrates the staging of a shared input file by means of
the stage_in() method of the pilot and consequently making that available to
all compute units.

Note

Download the example:

curl -O https://raw.githubusercontent.com/radical-cybertools/radical.pilot/readthedocs/examples/io_staging_shared.py

7.3.4. Pipeline

This example demonstrates a two-step pipeline that makes use of a remote pilot
staging area, where the first step of the pipeline copies the intermediate
output into and that is picked up by the second step in the pipeline.

Note

Download the example:

curl -O https://raw.githubusercontent.com/radical-cybertools/radical.pilot/readthedocs/examples/io_staging_pipeline.py

8. Using Local and Remote HPC Resources

8.1. Introduction

RADICAL-Pilot allows you to launch a ComputePilot allocating a large number of
cores on a remote HPC cluster. The ComputePilot is then used to run multiple
ComputeUnits with small core-counts. This separates resource allocation and
management from resource usage, and avoids HPC cluster queue policies and
waiting times which can significantly reduce the total time to completion of
your application.

If you want to use a remote HPC resource (in this example a cluster named
“Archer”, located at EPSRC, UK) you have to define it in the
ComputePilotDescription like this:

pdesc = radical.pilot.ComputePilotDescription()
pdesc.resource = "epsrc.archer"
pdesc.project = "e1234"
pdesc.runtime = 60
pdesc.cores = 128

Using a resource key other than “local.localhost” implicitly tells
RADICAL-Pilot that it is targeting a remote resource. RADICAL-Pilot is using the
SSH/GSISSH (and SFTP/GSISFTP) protocols to communicate with remote resources.
The next section, Configuring SSH Access provides some details about SSH set-up.
Pre-Configured Resources lists the resource keys that are already defined
and ready to be used in RADICAL-Pilot.

8.2. Configuring SSH Access

If you can manually SSH into the target resource, RADICAL-Pilot can do the same.
While RADICAl-Pilot supports username and password authentication, it is
highly-advisable to set-up password-less ssh keys for the resource you want to
use. If you are not familiar with how to setup password-less ssh keys, check out
this link [http://www.debian-administration.org/articles/152].

All SSH-specific informations, like remote usernames, passwords, and keyfiles,
are set in a Context object. For example, if you want to tell RADICAL-Pilot
your user-id on the remote resource, use the following construct:

session = radical.pilot.Session()

c = radical.pilot.Context('ssh')
c.user_id = "tg802352"
session.add_context(c)

Note

Tip: You can create an empty file called .hushlogin in your home
directory to turn off the system messages you see on your screen at every
login. This can help if you encounter random connection problems with
RADICAL-Pilot.

8.3. Pre-Configured Resources

Resource configurations are a set of key/value dictionaries with details of a
remote resource like queuing-, file-system-, and environment-. Once a configuration file is available for a given resource, a user chooses that
pre-configured resource in her code like this:

pdesc = radical.pilot.ComputePilotDescription()
pdesc.resource = "epsrc.archer"
pdesc.project = "e1234"
pdesc.runtime = 60
pdesc.cores = 128
pdesc.queue = "large"

The RADICAL-Pilot developer team maintains a growing set of resource
configuration files. Several of the settings included there can be overridden in
the ComputePilotDescription object. For example, the snipped above replaces
the default queue standard with the queue large. For a list of supported
configurations, see List of Pre-Configured Resources - those resource files live under
radical/pilot/configs/.

8.4. Writing a Custom Resource Configuration File

If you want to use RADICAL-Pilot with a resource that is not in any of the
provided resource configuration files, you can write your own, and drop it in
$HOME/.radical/pilot/configs/<your_resource_configuration_file_name>.json.

Note

Be advised that you may need specific knowledge about the target resource to
do so. Also, while RADICAL-Pilot can handle very different types of systems
and batch system, it may run into trouble on specific configurations or
software versions we did not encounter before. If you run into trouble
using a resource not in our list of officially supported ones, please drop
us a note on the RADICAL-Pilot users mailing list [https://groups.google.com/d/forum/radical-pilot-users].

A configuration file has to be valid JSON. The structure is as follows:

filename: lrz.json
{
 "supermuc":
 {
 "description" : "The SuperMUC petascale HPC cluster at LRZ.",
 "notes" : "Access only from registered IP addresses.",
 "schemas" : ["gsissh", "ssh"],
 "ssh" :
 {
 "job_manager_endpoint" : "loadl+ssh://supermuc.lrz.de/",
 "filesystem_endpoint" : "sftp://supermuc.lrz.de/"
 },
 "gsissh" :
 {
 "job_manager_endpoint" : "loadl+gsissh://supermuc.lrz.de:2222/",
 "filesystem_endpoint" : "gsisftp://supermuc.lrz.de:2222/"
 },
 "default_queue" : "test",
 "lrms" : "LOADL",
 "task_launch_method" : "SSH",
 "mpi_launch_method" : "MPIEXEC",
 "forward_tunnel_endpoint" : "login03",
 "global_virtenv" : "/home/hpc/pr87be/di29sut/pilotve",
 "pre_bootstrap_0" : ["source /etc/profile",
 "source /etc/profile.d/modules.sh",
 "module load python/2.7.6",
 "module unload mpi.ibm", "module load mpi.intel",
 "source /home/hpc/pr87be/di29sut/pilotve/bin/activate"
],
 "valid_roots" : ["/home", "/gpfs/work", "/gpfs/scratch"],
 "agent_type" : "multicore",
 "agent_scheduler" : "CONTINUOUS",
 "agent_spawner" : "POPEN",
 "pilot_agent" : "radical-pilot-agent-multicore.py",
 "pilot_dist" : "default"
 },
 "ANOTHER_KEY_NAME":
 {
 ...
 }
}

The name of your file (here lrz.json) together with the name of the resource
(supermuc) form the resource key which is used in the
class:ComputePilotDescription resource attribute (lrz.supermuc).

All fields are mandatory, unless indicated otherwise below.

	description: a human readable description of the resource.

	notes: information needed to form valid pilot descriptions, such as what parameter are required, etc.

	schemas: allowed values for the access_schema parameter of the pilot description. The first schema in the list is used by default. For each schema, a subsection is needed which specifies job_manager_endpoint and filesystem_endpoint.

	job_manager_endpoint: access url for pilot submission (interpreted by SAGA).

	filesystem_endpoint: access url for file staging (interpreted by SAGA).

	default_queue: queue to use for pilot submission (optional).

	lrms: type of job management system. Valid values are: LOADL, LSF, PBSPRO, SGE, SLURM, TORQUE, FORK.

	task_launch_method: type of compute node access, required for non-MPI units. Valid values are: SSH,``APRUN`` or LOCAL.

	mpi_launch_method: type of MPI support, required for MPI units. Valid values are: MPIRUN, MPIEXEC, APRUN, IBRUN or POE.

	python_interpreter: path to python (optional).

	python_dist: anaconda or default, ie. not anaconda (mandatory).

	pre_bootstrap_0: list of commands to execute for initialization of main agent (optional).

	pre_bootstrap_1: list of commands to execute for initialization of sub-agent (optional).

	valid_roots: list of shared file system roots (optional). Note: pilot sandboxes must lie under these roots.

	pilot_agent: type of pilot agent to use. Currently: radical-pilot-agent-multicore.py.

	forward_tunnel_endpoint: name of the host which can be used to create ssh tunnels from the compute nodes to the outside world (optional).

Several configuration files are part of the RADICAL-Pilot installation, and live
under radical/pilot/configs/.

8.5. Customizing Resource Configurations Programatically

The set of resource configurations available to the RADICAL-Pilot session is
accessible programmatically. The example below changes the default_queue for
the epsrc.archer resource.

import radical.pilot as rp
import pprint

RESOURCE = 'epsrc.archer'

get a pre-installed resource configuration
session = rp.Session()
cfg = session.get_resource_config(RESOURCE)
pprint.pprint (cfg)

create a new config based on the old one, and set a different launch method
new_cfg = rp.ResourceConfig(RESOURCE, cfg)
new_cfg.default_queue = 'royal_treatment'

now add the entry back. As we did not change the config name, this will
replace the original configuration. A completely new configuration would
need a unique label.
session.add_resource_config(new_cfg)
pprint.pprint (session.get_resource_config(RESOURCE))

9. Unit Scheduler

9.1. Introduction

The class:radical.pilot.UnitManager dispatches compute units to available
pilots for execution. It does so according to some schedulin algorithm, which
can be selected when instantiating the manager. Momentarily we support two
schduling algorithms: ‘Round-Robin’ and ‘Backfilling’. New schedulers can be
added to radical.pilot – please contact us on the mailing list
`radical-pilot-devel@googlegroups.com’ for details on support.

Note that radical.pilot enacts a second scheduling step: once a pilot agent
takes ownership of units which the unit manager scheduler assigned to it, the
agent scheduler will place the units on the set of resources (cores) that agent
is managing. The agent scheduler can be configured via agent and resource
configuration files (see List of Pre-Configured Resources).

9.2. Round-Robin Scheduler (SCHEDULER_ROUND_ROBIN)

The Round-Robin scheduler will fairly distributed arriving compute units over
the set of known pilots, independent of unit state, expected workload, pilot
state or pilot lifetime. As such, it is a fairly simplistic, but also a very
fast scheduler, which does not impose any additional communication roundtrips
between the unit manager and pilot agents.

9.3. Backfilling Scheduler (SCHEDULER_BACKFILLING)

The backfilling scheduler does a better job at actual load balancing, but at the
cost of additional communication roundtrips. It depends on the actual
application workload if that load balancing is beneficial or not.

Backfilling is most beneficial for large numbers of pilots and for relatively
long running units (where the CU runtime is significantly longer than the
communication roundtrip time between unit manager and pilot agent).

In general we thus recomment to not use backfilling

	for a single pilot;

	for large numbers of short-running CUs.

The backfilling scheduler (BF) will only dispatch units to pilot agents once the
pilot agent is in ‘RUNNING’ state. The units will thus get executed even if one
of the pilots never reaches that state: the load will be distributed between
pilots which become ‘ACTIVE’.

The BF will only dispatch as many units to an agent which the agent can, in
principle, execute concurrently. No units will be waiting in the agent’s own
scheduler queue. The BF will react on unit termination events, and will then
backfill (!) the agent with any remaining units. The agent will remain
under-utilized during that communication.

In order to minimize agent under-utilization, the user can set the environment
variable RADICAL_PILOT_BF_OVERSUBSCRIPTION, which specifies (in percent) with
how many units the BF can overload the pilot agent, without waiting for unit
termination notices. This mechanism effectively hides the communication
latencies, as long as unit runtimes are significantly larger than the
communication delays. Thre default oversubscription value is ‘0%’, i.e. no
oversubscription.

10. Testing

10.1. Introduction

Along with RADICAL-Pilot’s functionality, we develop a growing set of unit
tests. The unit test source code can be found in src/radical/pilot/tests. You
can run the unit tests directly from the source directory without haing
to install RADICAL-Pilot first:

export RADICAL_PILOT_VERBOSE=debug
export RADICAL_PILOT_TEST_DBNAME=rbtest_`date | md5sum | cut -c 1-32`
python setup.py test

Note

RADICAL_PILOT_TEST_DBNAME creates a somewhat of a random database
name for the tests. This prevents interference caused by tests run against
the same MongoDB concurrently.

If you run the same command in an environment where RADICAL-Pilot is already
installed, the unit tests will test the installed version instead of the
source version.

10.2. Remote Testing

The RADICAL-Pilot unit tests use pilot agents launched on the local machine
(localhost) by default. However, it is possible to run a subset of the unit
tests (src/radical/pilot/tests/remote/) on a remote machine. Remote testing can be
controlled via a set of environment variables:

	Environment Variable

	What

	RADICAL_PILOT_TEST_REMOTE_RESOURCE

	The name (key) of the resource.

	RADICAL_PILOT_TEST_REMOTE_SSH_USER_ID

	The user ID on the remote system.

	RADICAL_PILOT_TEST_REMOTE_SSH_USER_KEY

	The SSH key to use for the connection.

	RADICAL_PILOT_TEST_REMOTE_WORKDIR

	The working directory on the remote system.

	RADICAL_PILOT_TEST_REMOTE_CORES

	The number of cores to allocate.

	RADICAL_PILOT_TEST_REMOTE_NUM_CUS

	The number of Compute Units to run.

	RADICAL_PILOT_TEST_TIMEOUT

	Set a timeout in minutes after which the tests will terminate.

So if for example you want to run the unit tests on Futuregrid’s _India_ cluster
(http://manual.futuregrid.org/hardware.html), run

RADICAL_PILOT_VERBOSE=debug \
RADICAL_PILOT_TEST_REMOTE_SSH_USER_ID=oweidner # optional \
RADICAL_PILOT_TEST_REMOTE_RESOURCE=futuregrid.INDIA \
RADICAL_PILOT_TEST_REMOTE_WORKDIR=/N/u/oweidner/radical.pilot.sandbox \
RADICAL_PILOT_TEST_REMOTE_CORES=32 \
RADICAL_PILOT_TEST_REMOTE_NUM_CUS=64 \
python setup.py test

Note

Be aware that it can take quite some time for pilots to get scheduled on
the remote system. You can set RADICAL_PILOT_TEST_TIMEOUT to force the tests
to abort after a given number of minutes.

10.3. Adding New Tests

If you want to add a new test, for example to reproduce an error that you have
encountered, please follow this procedure:

In the src/radical/pilot/tests/issues/ directory, create a new file. If applicable,
name it after the issues number in the RADICAL-Pilot issues tracker, e.g., issue_123.py.

The content of the file should look like this (make sure to change the class name):

import os
import sys
import radical.pilot
import unittest

DBURL defines the MongoDB server URL and has the format mongodb://user:password@host:port.
For the installation of a MongoDB server, refer to the MongoDB website:
http://docs.mongodb.org/manual/installation/
DBURL = os.getenv("RADICAL_PILOT_DBURL")
if DBURL is None:
 print "ERROR: RADICAL_PILOT_DBURL (MongoDB server URL) is not defined."
 sys.exit(1)

DBNAME = 'radicalpilot_unittests'

#---
#
class TestIssue123(unittest.TestCase):

 def setUp(self):
 # clean up fragments from previous tests
 client = MongoClient(DBURL)
 client.drop_database(DBNAME)

 def tearDown(self):
 # clean up after ourselves
 client = MongoClient(DBURL)
 client.drop_database(DBNAME)

 #---
 #
 def test__issue_163_part_1(self):
 """ https://github.com/radical-cybertools/radical.pilot/issues/123
 """
 session = radical.pilot.Session(database_url=DBURL, database_name=DBNAME)

 # Your test implementation

 session.close()

Now you can re-install RADICAL-Pilot and run you new test. In the source root,
run:

easy_install . && python -m unittest -v -q radical.pilot.tests.issues.issue_123.TestIssue123

11. Benchmarks

Performance, and specifically improved application performance, is a main
objective for the existence of RADICAL-Pilot. To enable users to understand
performance of both RADICAL-Pilot itself and of the applications executed with
RADICAL-Pilot, we provide some utilities for benchmarking and performance
analysis.

Note

Performance profiling is enabled by setting RADICAL_PILOT_PROFILE in the
application environment. If profiling is enabled, the application can
request any number of cores on the resource local.localhost.

During operation, RADICAL-Pilot stores time stamps of different events and
activities in MongoDB, under the ID of the radical.pilot.Session. That
information can be used for post mortem performance analysis. To do so, one
needs to specify the session ID to be examined – you can print the session ID
when running your application, via

print "session id: %s" % session.uid

With that session ID, you can use the tool radicalpilot-stats to print some
statistics, and to plot some performance graphs:

$ radicalpilot-stats -m plot -s 53b5bbd174df926f4a4d3318

This command will, in the plot mode shown above, produce
a 53b5bbd174df926f4a4d3318.png and a 53b5bbd174df926f4a4d3318.pdf plot
(where 53b5bbd174df926f4a4d3318 is the session ID as mentioned. The same
command has other modi for inspecting sessions – you can see a help message via

$./bin/radicalpilot-stats -m help

usage : ./bin/radicalpilot-stats -m mode [-d dburl] [-s session]
example : ./bin/radicalpilot-stats -m stats -d mongodb://localhost/radicalpilot -s 536afe101d41c83696ea0135

modes :

 help : show this message
 list : show a list of sessions in the database
 tree : show a tree of session objects
 dump : show a tree of session objects, with full details
 sort : show a list of session objects, sorted by type
 hist : show timeline of session history
 stat : show statistics of session history (not implemented)
 plot : save gnuplot representing session history

The default command is 'list'. If no session ID is specified, operations
which apply to a single session will choose the last session in the given
DB. The default MongoDB is 'mongodb://ec2-184-72-89-141.compute-1.amazonaws.com:27017/radicalpilot/'

An exemplar performance plot is included below. It represents a number of
events and metrics, represented over a time axis. In particular, it shows (at
the bottom) the utilization of the various compute cores managed by the pilots
in the session – if that utilization is showing no major gaps, your
application should make efficient use of the allocated resources.

[image: _images/rp.benchmark.png]
Note that the plotting capability needs an up-to-date installation of gnuoplot
with the cairo-png backend. For Linux, that can be installed from the usual
package repositories. For MacOS, the following should take care of the
installation:

12. Details on Profiling

Note

This section is for developers, and should be disregarded for production
runs and ‘normal’ users in general.

RADICAL-Pilot allows to tweak the pilot process behavior in many details, and
specifically allows to artificially increase the load on individual components,
for the purpose of more detailed profiling, and identification of bottlenecks.
With that background, a pilot description supports an additional attribute
_config, which accepts a dict of the following structure:

pdesc = rp.ComputePilotDescription()
pdesc.resource = "local.localhost"
pdesc.runtime = 5 # minutes
pdesc.cores = 8
pdesc.cleanup = False
pdesc._config = {'number_of_workers' : {'StageinWorker' : 1,
 'ExecWorker' : 2,
 'StageoutWorker' : 1,
 'UpdateWorker' : 1},
 'blowup_factor' : {'Agent' : 1,
 'stagein_queue' : 1,
 'StageinWorker' : 1,
 'schedule_queue' : 1,
 'Scheduler' : 1,
 'execution_queue' : 10,
 'ExecWorker' : 1,
 'watch_queue' : 1,
 'Watcher' : 1,
 'stageout_queue' : 1,
 'StageoutWorker' : 1,
 'update_queue' : 1,
 'UpdateWorker' : 1},
 'drop_clones' : {'Agent' : 1,
 'stagein_queue' : 1,
 'StageinWorker' : 1,
 'schedule_queue' : 1,
 'Scheduler' : 1,
 'execution_queue' : 1,
 'ExecWorker' : 0,
 'watch_queue' : 0,
 'Watcher' : 0,
 'stageout_queue' : 1,
 'StageoutWorker' : 1,
 'update_queue' : 1,
 'UpdateWorker' : 1}}

That configuration tunes the concurrency of some of the pilot components (here
we use two ExecWorker instances to spawn units. Further, we request that the
number of compute units handled by the ExecWorker is ‘blown up’ (multiplied)
by 10. This will created 9 near-identical units for every unit which enters
that component, and thus the load increases on that specific component, but not
on any of the previous ones. Finally, we instruct all components but the
ExecWorker, watch_queue and Watcher to drop the clones again, so that
later components won’t see those clones eiter. We thus strain only a specific
part of the pilot.

Setting these parameters requires some understanding of the pilot architecture.
While in general the application semantics remains unaltered, these parameters
do significantly alter resource consumption. Also, there do exist invalid
combinations which will cause the agent to fail, specifically it will usually be
invalid to push updates of cloned units to the client module (via MongoDB).

The pilot profiling (as stored in agent.prof in the pilot sandbox) will
contain timings for the cloned units. The unit IDs will be based upon the
original unit IDs, but have an appendix .clone.0001 etc., depending on the
value of the respective blowup factor. In general, only one of the
blowup-factors should be larger than one (otherwise the number of units will
grow exponentially, which is probably not what you want).

13. Frequently Asked Questions

Here are some answers to frequently-asked questions.
Got a question that isn’t answered here? Try the mailing list, or
file an issue bug tracker [http://www.github.com/radical-cybertools/radical.pilot/issues/new].

	How do I…

	…avoid the error “OperationFailure: too many namespaces/collections”

	…avoid the error “Permission denied (publickey,keyboard-interactive).” in AGENT.STDERR or STDERR.

	…avoid the error “Failed to execvp() ‘mybinary’: No such file or directory (2)”

	…avoid errors from setuptools when trying to use a virtualenv?

	…avoid the error “Received message too long 1903391841”

	…avoid the pop-up “Do you want the application python to accept incoming network connections?” on Mac OSX.

	…avoid the error “Could not detect shell prompt (timeout)”

	Other Questions

	How many concurrent RADICAL-Pilot scripts can I execute?

13.1. How do I…

13.1.1. …avoid the error “OperationFailure: too many namespaces/collections”

Traceback (most recent call last):
 File "application.py", line 120, in __init__
 db_connection_info=session._connection_info)
 File "/lib/python2.7/site-packages/radical/pilot/controller/pilot_manager_controller.py", line 88, in __init__
 pilot_launcher_workers=pilot_launcher_workers
 File "/lib/python2.7/site-packages/radical/pilot/db/database.py", line 253, in insert_pilot_manager
 result = self._pm.insert(pilot_manager_json)
 File "build/bdist.linux-x86_64/egg/pymongo/collection.py", line 412, in insert
 File "build/bdist.linux-x86_64/egg/pymongo/mongo_client.py", line 1121, in _send_message
 File "build/bdist.linux-x86_64/egg/pymongo/mongo_client.py", line 1063, in __check_response_to_last_error
pymongo.errors.OperationFailure: too many namespaces/collections

This can happen if radical.pilot too many sessions are piling up in the back-end
database. Normally, all database entries are removed when a RADICAL-Pilot
session is closed via session.close() (or more verbose via
session.close(cleanup=True), which is the default. However, if the
application fails and is not able to close the session, or if the session entry
remains puprosefully in place for later analysis with radicalpilot-stats,
then those entries add up over time.

RADICAL-Pilot provides two utilities which can be used to address this problem:
radicalpilot-close-session can be used to close a session when it is not
used anymore; radicalpilot-cleanup can be used to clean up all sessions
older than a specified number of hours or days, to purge orphaned session
entries in a bulk.

13.1.2. …avoid the error “Permission denied (publickey,keyboard-interactive).” in AGENT.STDERR or STDERR.

The AGENT.STDERR file or the STDERR file in the unit directory shows the following error and the pilot or unit never starts
running:

Permission denied (publickey,keyboard-interactive).
kill: 19932: No such process

Even though this should already be set up by default on many HPC clusters, it
is not always the case. The following instructions will help you to set up
password-less SSH between the cluster nodes correctly.

Log-in to the head-node or login-node of the cluster and run the
following commands:

cd ~/.ssh/
ssh-keygen -t rsa

Do not enter a passphrase. The result should look something like this:

Generating public/private rsa key pair.
Enter file in which to save the key (/home/e290/e290/oweidner/.ssh/id_rsa):
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in /home/e290/e290/oweidner/.ssh/id_rsa.
Your public key has been saved in /home/e290/e290/oweidner/.ssh/id_rsa.pub.
The key fingerprint is:
73:b9:cf:45:3d:b6:a7:22:72:90:28:0a:2f:8a:86:fd oweidner@eslogin001

Next, add you newly generated key to ~/.ssh/authorized_keys:

cat id_rsa.pub >> ~/.ssh/authorized_keys

This should be all. Next time you run radical.pilot, you shouldn’t see that
error message anymore.

(For more general information on SSH keys, check out this
link: http://www.linuxproblem.org/art_9.html)

13.1.3. …avoid the error “Failed to execvp() ‘mybinary’: No such file or directory (2)”

This may happen specifically on Gordon. The full error in STDERR is something like:

[gcn-X-X.sdsc.edu:mpispawn_0][spawn_processes] Failed to execvp() 'mybinary': No such file or directory (2)

You need to specify the full path of the executable as mpirun_rsh is not able to find it in the path

13.1.4. …avoid errors from setuptools when trying to use a virtualenv?

This happens most likely because an upgrade of pip or setuptools failed.

We have seen occurences where an update of setuptools or pip can make
a virtualenv unusable. We don’t have any suggestion on how to get the affected
virtualenv clean again - it seems easiest to just start over with a new
virtualenv. If the problem persists, try to use the default version of
setuptools and pip, i.e. do not upgrade them.

13.1.5. …avoid the error “Received message too long 1903391841”

This error may show up in the DEBUG level logs during file staging or pilot
startup, when sftp is used as a transfer protocol. We have seen this error
being caused by verbose .bashrc files (or other login files), which confuses
sftp startup. Please make sure that any parts of the bashrc which print
information etc. are only executed on interactive shell (ie. on shells which
have a prompt set as $PS1). The snippet below shows how to di that:

if [! -z "$PS1"]
then
 echo "hello $USER"
 date
fi

13.1.6. …avoid the pop-up “Do you want the application python to accept incoming network connections?” on Mac OSX.

This is coming from the firewall on your Mac. You can either:

	click “Allow” (many times)

	disable your firewall (temporarily)

	Sign the application per instructions here: http://apple.stackexchange.com/a/121010

13.1.7. …avoid the error “Could not detect shell prompt (timeout)”

We generally only support sh and bash as login shells on the target
machines. Please try to switch to those shells if you use others like zsh and
csh/tcsh. If you need other shells supported, please open a ticket.

Prompt detecting behaviour can be improved by calling touch $HOME/.hushlogin
on the target machine, which will suppress some system messages on login.

If the problem persists, please open a ticket.

Details: we implement rather cumbersome screen scraping via an interactive ssh
session to get onto the target machine, instead of using paramiko or other
modules. This gives us better performance, but most importantly, this gives us
support for gsissh, which we did not find available in any other package so
far.

13.2. Other Questions

13.2.1. How many concurrent RADICAL-Pilot scripts can I execute?

From a RADICAL-Pilot perspective there is no limit, but as SSH is used to access many systems, there is a resource specific limit of the number of SSH connections one can make.

14. Developer Documentation

14.1. Installation from Source

If you are planning to contribute to the RADICAL-Pilot codebase, or if you want
to use the latest and greatest development features, you can download
and install RADICAL-Pilot directly from the sources.

First, you need to check out the sources from GitHub.

git clone https://github.com/radical-cybertools/radical.pilot.git

Next, run the installer directly from the source directoy (assuming you have
set up a vritualenv):

pip install --upgrade .

14.2. License

RADICAL-Pilot uses the MIT License (https://github.com/radical-cybertools/radical.pilot/blob/devel/LICENSE.md).

14.3. Style Guide

To maintain consistency and uniformity we request people to try to follow our coding style guide lines.

We generally follow PEP 8 (http://legacy.python.org/dev/peps/pep-0008/), with currently one explicit exception:

	When alignment of assignments improves readability.

14.4. Debugging

The RADICAL_PILOT_VERBOSE environment variable controls the debug output of
a RADICAL-Pilot application. Possible values are:

	debug

	info

	warning

	error

The environment variable RADICAL_PILOT_AGENT_VERBOSE controls the debug log
level of the agent process on the target resource. If it is not set, the log
level from RADICAL_PILOT_VERBOSE is used.

14.5. RADICAL-Pilot Architecture

Describe architecture overview here.

14.5.1. PilotManager and PilotManager Worker

[image: _images/architecture_pilotmanager.png]
Download PDF version.

14.5.2. UnitManager and UnitManager Worker

[image: _images/architecture_unitmanager.png]
Download PDF version.

Index

 _
 | A
 | C
 | D
 | E
 | F
 | G
 | I
 | L
 | M
 | N
 | P
 | R
 | S
 | U
 | V
 | W

_

 	
 	__init__() (radical.pilot.Context method)

 	(radical.pilot.PilotManager method)

 	(radical.pilot.Session method)

 	(radical.pilot.UnitManager method)

A

 	
 	add_pilots() (radical.pilot.UnitManager method)

 	add_resource_config() (radical.pilot.Session method)

 	as_dict() (radical.pilot.ComputePilot method)

 	(radical.pilot.ComputeUnit method)

 	(radical.pilot.PilotManager method)

 	(radical.pilot.Session method)

 	(radical.pilot.UnitManager method)

C

 	
 	cancel() (radical.pilot.ComputePilot method)

 	(radical.pilot.ComputeUnit method)

 	cancel_pilots() (radical.pilot.PilotManager method)

 	cancel_units() (radical.pilot.UnitManager method)

 	close() (radical.pilot.PilotManager method)

 	(radical.pilot.Session method)

 	(radical.pilot.UnitManager method)

 	closed (radical.pilot.Session attribute)

 	ComputePilot (class in radical.pilot)

 	ComputePilotDescription (class in radical.pilot)

 	ComputePilotDescription.access_schema (in module radical.pilot)

 	ComputePilotDescription.candidate_hosts (in module radical.pilot)

 	ComputePilotDescription.cleanup (in module radical.pilot)

 	ComputePilotDescription.cores (in module radical.pilot)

 	ComputePilotDescription.memory (in module radical.pilot)

 	ComputePilotDescription.project (in module radical.pilot)

 	ComputePilotDescription.queue (in module radical.pilot)

 	ComputePilotDescription.resource (in module radical.pilot)

 	ComputePilotDescription.runtime (in module radical.pilot)

 	ComputePilotDescription.sandbox (in module radical.pilot)

 	ComputeUnit (class in radical.pilot)

 	ComputeUnitDescription (class in radical.pilot)

 	ComputeUnitDescription.arguments (in module radical.pilot)

 	ComputeUnitDescription.cleanup (in module radical.pilot)

 	
 	ComputeUnitDescription.cpu_process_type (in module radical.pilot)

 	ComputeUnitDescription.cpu_processes (in module radical.pilot)

 	ComputeUnitDescription.cpu_thread_type (in module radical.pilot)

 	ComputeUnitDescription.cpu_threads (in module radical.pilot)

 	ComputeUnitDescription.environment (in module radical.pilot)

 	ComputeUnitDescription.executable (in module radical.pilot)

 	ComputeUnitDescription.gpu_process_type (in module radical.pilot)

 	ComputeUnitDescription.gpu_processes (in module radical.pilot)

 	ComputeUnitDescription.gpu_thread_type (in module radical.pilot)

 	ComputeUnitDescription.gpu_threads (in module radical.pilot)

 	ComputeUnitDescription.input_staging (in module radical.pilot)

 	ComputeUnitDescription.kernel (in module radical.pilot)

 	ComputeUnitDescription.lfs (in module radical.pilot)

 	ComputeUnitDescription.metadata (in module radical.pilot)

 	ComputeUnitDescription.name (in module radical.pilot)

 	ComputeUnitDescription.output_staging (in module radical.pilot)

 	ComputeUnitDescription.pilot (in module radical.pilot)

 	ComputeUnitDescription.post_exec (in module radical.pilot)

 	ComputeUnitDescription.pre_exec (in module radical.pilot)

 	ComputeUnitDescription.restartable (in module radical.pilot)

 	ComputeUnitDescription.stderr (in module radical.pilot)

 	ComputeUnitDescription.stdout (in module radical.pilot)

 	connected (radical.pilot.Session attribute)

 	Context (class in radical.pilot)

 	created (radical.pilot.Session attribute)

D

 	
 	DatabaseError (class in radical.pilot)

 	
 	description (radical.pilot.ComputePilot attribute)

 	(radical.pilot.ComputeUnit attribute)

E

 	
 	exit_code (radical.pilot.ComputeUnit attribute)

F

 	
 	from_dict() (radical.pilot.Context class method)

G

 	
 	get_message() (radical.pilot.PilotException method)

 	get_object() (radical.pilot.PilotException method)

 	get_pilot_managers() (radical.pilot.Session method)

 	get_pilots() (radical.pilot.PilotManager method)

 	(radical.pilot.UnitManager method)

 	
 	get_resource_config() (radical.pilot.Session method)

 	get_unit_managers() (radical.pilot.Session method)

 	get_units() (radical.pilot.UnitManager method)

I

 	
 	inject_metadata() (radical.pilot.Session method)

 	
 	is_valid() (radical.pilot.PilotManager method)

 	(radical.pilot.UnitManager method)

L

 	
 	list_pilot_managers() (radical.pilot.Session method)

 	list_pilots() (radical.pilot.PilotManager method)

 	(radical.pilot.UnitManager method)

 	
 	list_resources() (radical.pilot.Session method)

 	list_unit_managers() (radical.pilot.Session method)

 	list_units() (radical.pilot.UnitManager method)

 	log (radical.pilot.ComputePilot attribute)

M

 	
 	metadata (radical.pilot.ComputeUnit attribute)

N

 	
 	name (radical.pilot.ComputeUnit attribute)

P

 	
 	pilot (radical.pilot.ComputeUnit attribute)

 	pilot_sandbox (radical.pilot.ComputePilot attribute)

 	
 	PilotException (class in radical.pilot)

 	PilotManager (class in radical.pilot)

 	pmgr (radical.pilot.ComputePilot attribute)

R

 	
 	register_callback() (radical.pilot.ComputePilot method)

 	(radical.pilot.ComputeUnit method)

 	(radical.pilot.PilotManager method)

 	(radical.pilot.UnitManager method)

 	
 	remove_pilots() (radical.pilot.UnitManager method)

 	resource (radical.pilot.ComputePilot attribute)

 	resource_details (radical.pilot.ComputePilot attribute)

S

 	
 	scheduler (radical.pilot.UnitManager attribute)

 	Session (class in radical.pilot)

 	session (radical.pilot.ComputePilot attribute)

 	(radical.pilot.ComputeUnit attribute)

 	stage_in() (radical.pilot.ComputePilot method)

 	state (radical.pilot.ComputePilot attribute)

 	(radical.pilot.ComputeUnit attribute)

 	
 	stderr (radical.pilot.ComputePilot attribute)

 	(radical.pilot.ComputeUnit attribute)

 	stdout (radical.pilot.ComputePilot attribute)

 	(radical.pilot.ComputeUnit attribute)

 	submit_pilots() (radical.pilot.PilotManager method)

 	submit_units() (radical.pilot.UnitManager method)

U

 	
 	uid (radical.pilot.ComputePilot attribute)

 	(radical.pilot.ComputeUnit attribute)

 	(radical.pilot.PilotManager attribute)

 	(radical.pilot.UnitManager attribute)

 	
 	umgr (radical.pilot.ComputeUnit attribute)

 	unit_sandbox (radical.pilot.ComputeUnit attribute)

 	UnitManager (class in radical.pilot)

V

 	
 	verify() (radical.pilot.ComputeUnitDescription method)

W

 	
 	wait() (radical.pilot.ComputePilot method)

 	(radical.pilot.ComputeUnit method)

 	
 	wait_pilots() (radical.pilot.PilotManager method)

 	wait_units() (radical.pilot.UnitManager method)

Getting Started

This guide will introduce the main usage modes of RP by presenting a series of
simple code examples. Starting from the simplest possible RP application code,
the follow-up examples separately add and discuss more advanced features.

Getting Started

A series of getting_started_[n].py examples demonstrate the usage of RP, by
executing a bag of simple shell commands over pilot(s). The different scripts
all base on the simplest case in getting_started_00.py, introducing different
features:

	getting_started_00.py: basic example

	getting_started_01.py: obtain unit details

	getting_started_02.py: handle failing units

	getting_started_03.py: use multiple pilots

	getting_started_04.py: use a different scheduler

	getting_started_05.py: stage unit input data

	getting_started_06.py: stage unit output data

	getting_started_07.py: stage shared unit input data

	getting_started_08.py: use environment variables for units

	getting_started_09.py: running MPI units

	getting_started_10.py: use pre- and post- execution

All examples use the ‘reporting’ facility of RADICAL-Utils for output. That can
be changed to rather verbose debugging output via the os.environment setting
at the beginning of the example, by changing

`
os.environ['RADICAL_VERBOSE'] = 'DEMO'
`

to

`
os.environ['RADICAL_VERBOSE'] = 'DEBUG'
`

All getting_started_[n].py examples accept resource targets. To simplify the
examples, some resource configuration details are moved to a config file
(resources.json). Please make sure that it contains valid settings for the
target resources.

All examples assume password-less ssh access to be configured out-of-band (or
gsissh if so indicated in the resource config).

RP requires a MongoDB instance as storage backend. Please set the environment
variable RADICAL_PILOT_DBURL to point to a valid MongoDB. The value should
have the form:


	```

	export RADICAL_PILOT_DBURL=”mongodb://some.host.ne:port/database_name/”





```

The specified database does not not need to exist, but is created on the fly.
For MongoDB instances which require user/pass authentication, use


	```

	export RADICAL_PILOT_DBURL=”mongodb://user:pass@some.host.ne:port/database_name/”





```

Other MongoDB authentication methods are currently not supported. Note that
unsecured databases are open to man-in-the-middle attacks!

Release Notes

	For a list of bug fixes, see
https://github.com/radical-cybertools/radical.pilot/issues?q=is%3Aissue+is%3Aclosed+sort%3Aupdated-desc

	For a list of open issues and known problems, see
https://github.com/radical-cybertools/radical.pilot/issues?q=is%3Aissue+is%3Aopen+

0.50.21 Release 2018-12-19

	fix LSF var expansion

0.50.20 Release 2018-11-25

	fix Titan OMPI installation

	support metdata for units

	fix git error detection during setup

0.50.19 Release 2018-11-15

	ensure profile fetching on empty tarballs

0.50.18 Release 2018-11-13

	support for data locality aware scheduling

0.50.17 Release 2018-10-31

	improve event documentation

	support CU level metadata

0.50.16 Release 2018-10-26

	add new shell spawner as popen replacement

0.50.15 Release 2018-10-24

	fix recursive pilot staging

0.50.14 Release 2018-10-24

	add Cheyenne support - thanks Vivek!

0.50.13 Release 2018-10-16

	survive if SAGA does not support job.name (#1744)

0.50.12 Release 2018-10-12

	fix stacksize usage on BW

0.50.11 Release 2018-10-09

	fix ‘getting_started’ example (no MPI)

0.50.10 Release 2018-09-29

	ensure the correct code path in SAGA for Blue Waters

0.50.9 Release 2018-09-28

	fix examples

	fix issue #1715 (#1716)

	remove Stampede’s resource configs. issue #1711

	supermic does not like curl -1 (#1723)

0.50.8 Release 2018-08-03

	make sure that CUD values are not None (#1688)

	don’t limit pymongo version anymore (#1687)

0.50.7 Release 2018-08-01

	fix bwpy handling

0.50.6 Release 2018-07-31

	fix curl tssl negotiation problem (#1683)

0.50.5 Release 2018-07-30

	fix default values for process and thread types (#1681)

	fix outdated links in ompi deploy script

	fix/issue 1671 (#1680)

	fix scheduler config checks (#1677)

0.50.4 Release 2018-07-13

	set oversubscribe default to True

0.50.3 Release 2018-07-11

	disable rcfg expnsion

0.50.2 Release 2018-07-08

	fix relative tarball unpack paths

0.50.1 Release 2018-07-05

	GPU support

	many bug fixes

0.47.14 Release 2018-06-13

	fix recursive output staging

0.47.13 Release 2018-06-02

	catch up with RU log, rep and prof settings

0.47.12 Release 2018-05-19

	ensure that units are started in their own process group, to ensure clean
cancellation semantics.

0.47.11 Release 2018-05-08

	fix schemas on BW (local orte, local aprun)

0.47.10 Release 2018-04-19

	fix #1602

0.47.9 Release 2018-04-18

	fix default scheduler for localhost

0.47.8 Release 2018-04-16

	hotfix to catch up with pypi upgrade

0.47.7 Release 2018-04-15

	bugfix related to radical.entk #255

0.47.6 Release 2018-04-12

	bugfix related to #1590

0.47.5 Release 2018-04-12

	make sure a dict object exists even on empty env settings (#1590)

0.47.4 Release 2018-03-20

	fifo agent scheduler (#1537)

	hombre agent scheduler (#1536)

	Fix/issue 1466 (#1544)

	Fix/issue 1501 (#1541)

	switch to new OMPI deployment on titan (#1529)

	add agent configuration doc (#1540)

0.47.3 Release 2018-03-20

	add resource limit test

	add tmp cheyenne config

	api rendering proposal for partitions

	fix bootstrap sequence (BW)

	tighten bootstrap process, add documentation

0.47.2 Release 2018-02-28

	fix issue 1538

	fix issue 1554

	expose profiler to LM hooks (#1522)

	fix bin names (#1549)

	fix event docs, add an event for symmetry (#1527)

	name attribute has been changed to uid, fixes issue #1518

	make use of flags consistent between RP and RS (#1547)

	add support for recursive data staging (#1513. #1514) (JD, VB, GC)

	change staging flags to integers (inherited from RS)

	add support for bulk data transfer (#1512) (IP, SM)

0.47 Release 2017-11-19

	Correctly added ‘lm_info.cores_per_node’ SLURM

	Torque RM now respects config settings for cpn

	Update events.md

	add SIGUSR2 for clean termination on SGE

	add information about partial event orders

	add issue demonstrators

	add some notes on cpython issue demonstrators

	add xsede.supermic_orte configuration

	add xsede.supermic_ortelib configuration

	apply RU’s managed process to termination stress test

	attempt to localize aprun units

	better hops for titan

	better integration of CU script and app profs

	catch up with config changes for local testing

	centralize URL derivation for pilot job service endpoints, hops, and sandboxes

	clarify use of namespace vs. full qualified URL in the context of RP file staging

	clean up config management, inheritance

	don’t fetch json twice

	ensure that profiles are flushed and packed correctly

	fail missing pilots on termination

	fix AGENT_ACTIVE profile timing

	fix close-session purge mode

	fix cray agent config, avoid termination race

	fix duplicated transition events

	fix osg config

	fix #1283

	fixing error from bootstrapper + aprun parsing error

	force profile flush earlier

	get cpn for ibrun

	implement session.list_resources() per #1419

	make sure a canceled pilot stays canceled

	make cb return codes consistent

	make sure profs are flushed on termination

	make sure the umgr only pulls units its interested in

	profile mkdir

	publish resource_details (incl. lm_info) again

	re-add a profile flag to advance()

	remove old controllers

	remove old files

	remove uid clashes for sub-agent components and components in general

	setup number of cores per node on stampede2

	smaller default pilot size for supermic

	switch to ibrun for comet_ssh

	track unit drops

	use js hop for untar

	using new process class

	GPU/CPU pinning test is now complete, needs some env settings in the launchers

0.46.2 Release 2017-09-02

	hotfix for #1426 - thanks Iannis!

0.46.1 Release 2017-08-23

	hotfix for #1415

Version 0.46 2017-08-11

	TODO

0.45.3 Release 2017-05-09

	Documentation update for the BW tutorial

0.45.1 Release 2017-03-05

	
	NOTE: OSG and ORTE_LIB on titan are considered unsupported. You can enable

	those resources for experiments by setting the enabled keys in the
respective config entries to true.

	hotfix the configurations markers above

0.45 Release 2017-02-28

	
	NOTE: OSG and ORTE_LIB on titan are considered unsupported. You can enable

	those resources for experiments by removing the comment markers from
the respective resource configs.

	Adapt to new orte-submit interface.

	Add orte-cffi dependency to bootstrapper.

	Agent based staging directives.

	Fixes to various resource configs

	Change orte-submit to orterun.

	Conditional importing of executors. Fixes #926.

	Config entries for orte lib on Titan.

	Corrected environment export in executing POPEN

	Extend virtenv lock timeout, use private rp_installs by default

	Fix non-mpi execution analogous to #975.

	Fix/issue 1226 (#1232)

	Fresh orte installation for bw.

	support more OSG sites

	Initial version of ORTE lib interface.

	Make cprofiling of scheduler conditional.

	Make list of cprofile subscribers configurable.

	Move env safekeeping until after the pre bootstrap.

	Record OSG site name in mongodb.

	Remove bash’isms from shell script.

	pylint motivated cleanups

	Resolving issue #1211.

	Resource and example config for Shark at LUMC.

	SGE changes for non-homogeneous nodes.

	Use ru.which

	add allegro.json config file for FUB allegro cluster

	add rsh launch method

	switch to gsissh on wrangler

	use new ompi installation on comet (#1228)

	add a simple/stupid ompi deployment helper

	updated Config for Stampede and YARN

	fix state transition to UNSCHEDDULED to avoid repetition
and invalid state ordering

0.44.1 Release 2016-11-01

	add an agent config for cray/aprun all on mom node

	add anaconda config for examples

	gsissh as default for wrangler, stampede, supermic

	add conf for spark n wrangler, comet

	add docs to the cu env inject

	expose spark’s master url

	fix CU env setting (stampede)

	configuration for spark and anaconda

	resource config entries for titan

	disable PYTHONHOME setting in titan_aprun

	dynamic configuration of spark_env

	fix for gordon config

	hardcode the netiface version until it is fixed upstream.

	implement NON_FATAL for staging directives.

	make resource config available to agent

	rename scripts

	update installation.rst

	analytics backport

	use profiler from RU

	when calling a unit state callback, missed states also trigger callbacks

0.43.1 Release 2016-09-09

	hotfix: fix netifaces to version 0.10.4 to avoid trouble on BlueWaters

0.43 Release 2016-09-08

	Add aec_handover for orte.

	add a local confiuration for bw

	add early binding eample for osg

	add greenfield config (only works for single-node runs at the moment)

	add PYTHONPATH to the vars we reset for CU envs

	allow overloading of agent config

	fix #1071

	fix synapse example

	avoid profiling of empty state transitions

	Check of YARN start-all script. Raising Runtime error in case of error.

	disable hwm altogether

	drop clones before push

	enable scheduling time measurements.

	First commit for multinode YARN cluster

	fix getip

	fix iface detection

	fix reordering of states for some update sequences

	fix unit cancellation

	improve ve create script

	make orte-submit aware of non-mpi CUs

	move env preservation to an earlier point, to avoid pre-exec stuff

	Python distribution mandatory to all confs

	Remove temp agent config directory.

	Resolving #1107

	Schedule behind the real unit and support multicore.

	SchedulerContinuous -> AgentSchedulingComponent.

	Take ccmrun out of bootstrap_2.

	Tempfile is not a tempfile so requires explicit removal.

	resolve #1001

	Unbreak CCM.

	use high water mark for ZMQ to avoid message drops on high loads

0.42 Release 2016-08-09

	change examples to use 2 cores on localhost

	Iterate documentation

	Manual cherry pick fix for getip.

0.41 Release 2016-07-15

	address some of error messages and type checks

	add scheduler documentation simplify interpretation of BF oversubscription fix a log message

	fix logging problem reported by Ming and Vivek

	global default url, sync profile/logfile/db fetching tools

	make staging path resilient against cwd changes

	Switch SSH and ORTE for Comet

	sync session cleanup tool with rpu

	update allocation IDs

0.40.4 Release 2016-05-18

	point release with more tutorial configurations

0.40.3 Release 2016-05-17

	point release with tutorial configurations

0.40.2 Release 2016-05-13

	hotfix to fix vnode parsing on archer

0.40.1 Release 2016-02-11

	hotfix which makes sure agents don’t report FAILED on cancel()

0.40 Release 2016-02-03

	Really numberous changes, fixes and features, most prominently:
- OSG support
- Yarn support
- new resource supported
- ORTE used for more resources
- improved examples, profiling
- communication cleanup
- large CU support
- lrms hook fixes
- agent code splitup

0.38 Release 2015-12-22

	fix busy mongodb pull

0.37.10 Release 2015-10-20

	config fix

0.37.9 Release 2015-10-20

	Example fix

0.37.8 Release 2015-10-20

	Allocation fix

0.37.7 Release 2015-10-20

	Allocation fix

0.37.6 Release 2015-10-20

	Documentation

0.37.5 Release 2015-10-19

	timing fix to ensure unit state ordering

0.37.3 Release 2015-10-19

	small fixes, doc changes

0.37.2 Release 2015-10-18

	fix example installation

0.37.1 Release 2015-10-18

	update of documentation and examples

	some small fixes on shutdown installation

0.37 Release 2015-10-15

	change default spawner to POPEN

	use hostlist to avoid mpirun* limitations

	support default callbacks on units and pilots

	use a config for examples

	add lrms shutdown hook for ORTE LM

	various updates to examples and documentation

	create logfile and profile tarballs on the fly

	export some RP env vars to units

	Fix a mongodb race

	internally unregister pilot cbs on shutdown

	move agent.stop to finally clause, to correctly react on signals

	remove RADICAL_DEBUG, use proper logger in queue, pubsub

	small changes to getting_started

	add APRUN entry for ARCHER.

	Updated APRUN config for ARCHER. Thanks Vivek!

	Use designated termination procedure for ORTE.

	Use statically compiled and linked OMPI/ORTE.

	Wait for its component children on termination

	make localhost (ForkLRMS) behave like a resource with an inifnite number of cores

0.36 Release 2015-10-08

(the release notes also cover some changes from 0.34 to 0.35)

	simplify agent process tree, process naming

	improve session and agent termination

	several fixes and chages to the unit state model (refer to documentation!)

	fix POPEN state reporting

	split agent component into individual, relocatable processes

	improve and generalize agent bootstrapping

	add support for dynamic agent layout over compute nodes

	support for ORTE launch method on CRAY (and others)

	add a watcher thread for the ORTE DVM

	improves profiling support, expand to RP module

	add various profiling analysis tools

	add support for profile fetching from remote pilot sandbox

	synchronize and recombine profiles from different pilots

	add a simple tool to run a recorded session.

	add several utility classes: component, queue, pubsub

	clean configuration passing from module to agent.

	clean tunneling support

	support different data frame formats for profiling

	use agent infrastructure (LRMS, LM) for spawning sub-agents

	allow LM to specify env vars to be unset.

	allow agent on mom node to use tunnel.

	fix logging to avoid log leakage from lower layers

	avoid some file system bottlenecks

	several resource specific configuration fixes (mostly stampede, archer, bw)

	backport stdout/stderr/log retrieval

	better logging of clone/drops, better error handling for configs

	fix, improve profiling of CU execution

	make profile an object

	use ZMQ pubsub and queues for agent/sub-agent communication

	decouple launch methods from scheduler for most LMs
NOTE: RUNJOB remains coupled!

	detect disappearing orte-dvm when exit code is zero

	perform node allocation for sub-agents

	introduce a barrier on agent startup

	fix some errors on shell spanwer (quoting, monotoring delays)

	make localhost layout configurable via cpn

	make setup.py report a decent error when being used with python3

	support nodename lookup on Cray

	only mkdir in input staging controller when we intent to stage data

	protect agent cb invokation by lock

	(re)add command line for profile fetching

	cleanup of data staging, with better support for different schemas
(incl. GlobusOnline)

	work toward better OSG support

	Use netifaces for ip address mangling.

	Use ORTE from the 2.x branch.

	remove Url class

0.35.1 Release 2015-09-29

	hotfix to use popen on localhost

0.35 Release 2015-07-14

	numerous bug fixes and support for new resources

0.34 Release 2015-07-14

	Hotfix release for an installation issue

0.33 Release 2015-05-27

	Hotfix release for off-by-one error (#621)

0.32 Release 2015-05-18

	Hotfix release for MPIRUN_RSH on Stampede (#572).

0.31 Release 2015-04-30

	version bump to trigger pypi release update

0.30 Release 2015-04-29

	hotfix to handle broken pip/bash combo on archer

0.29 Release 2015-04-28

	hotfix to handle stale ve locks

0.28 Release 2015-04-16

	This release contains a very large set of commits, and covers a fundamental
overhaul of the RP agent (amongst others). It also includes:
- support for agent profiling
- removes a number of state race conditions
- support for new backends (ORTE, CCM)
- fixes for other backends
- revamp of the integration tests

0.26 Release 2015-04-08

	hotfix to cope with API changing pymongo release

0.25 Release 2015-04-01

	hotfix for a stampede configuration change

0.24 Release 2015-03-30

	More support for URLs in StagingDirectives (#489).

	Create parent directories of staged files.

	Only process entries for Output FTW, fixes #490.

	SuperMUC config change.

	switch from bson to json for session dumps

	fixes #451

	update resources.rst

	remove superfluous n

	fix #438

	add documentation on resource config changes, closes #421

	.ssh/authorized_keys2 is deprecated since 2011

	improved intra-node SSH FAQ item

0.23 Release 2014-12-13

	fix #455

0.22 Release 2014-12-11

	several state races fixed

	fix to tools for session cleanup and purging

	partial fix for pilot cancelation

	improved shutdown behavior

	improved hopper support

	adapt plotting to changed slothistory format

	make instructions clearer on data staging examples

	addresses issue #216

	be more resilient on pilot shutdown

	take care of cancelling of active pilots

	fix logic error on state check for pilot cancellation

	fix blacklight config (#360)

	attempt to cancel pilots timely…

	as fallback, use PPN information provided by SAGA

	hopper usues torque (thanks Mark!)

	Re-fix blacklight config. Addresses #359 (again).

	allow to pass application data to callbacks

	threads should not be daemons…

	workaround on failing bson encoding…

	report pilot id on cu inspection

	ignore caching errors

	also use staging flags on input staging

	stampede environment fix

	Added missing stampede alias

	adds timestamps to unit and pilot logentries

	fix state tags for plots

	fix plot style for waitq

	introduce UNSCHEDULED state as per #233

	selectable terminal type for plot

	document pilot log env

	add faq about VE problems on setuptools upgrade

	allow to specify session cache files

	added configuration for BlueBiou (Thanks Jordane)

	better support for json/bson/timestamp handling; cache mongodb data for stats, plots etc

	localize numpy dependency

	retire input_data and output_data

	remove obsolete staging examples

	address #410

	fix another subtle state race

0.21 Release 2014-10-29

	Documentation of MPI support

	Documentation of data staging operations

	correct handling of data transfer exceptions

	fix handling of non-ascii data in unit stdio

	simplify switching of access schemas on pilot submission

	disable pilot virtualenv for unit execution

	MPI support for DaVinci

	performance optimizations on file transfers, unit sandbox setup

	fix ibrun tmp file problem on stampede

0.19 Release September 12. 2014

	The Milestone 8 release (MS.8)

	Closed Tickets:

	https://github.com/radical-cybertools/radical.pilot/issues?q=is%3Aclosed+milestone%3AMS-8+

0.18 Release July 22. 2014

	The Milestone 7 release (MS.7)

	Closed Tickets:

	https://github.com/radical-cybertools/radical.pilot/issues?milestone=13&state=closed

0.17 Release June 18. 2014

Bugfix release - fixed file permissions et al. :/

0.16 Release June 17. 2014

Bugfix release - fixed file permissions et al.

0.15 Release June 12. 2014

Bugfix release - fixed distribution MANIFEST:

https://github.com/radical-cybertools/radical.pilot/issues/174

0.14 Release June 11. 2014

Closed Tickets:

	https://github.com/radical-cybertools/radical.pilot/issues?milestone=16&state=closed

New Features

	Experimental pilot-agent for Cray systems

	New multi-core agent with MPI support

	New ResourceConfig mechanism does not reuquire the user to add

resource configurations explicitly. Resources can be configured
programatically on API-level.

API Changes:

	ComputeUnitDescription.working_dir_priv removed

	Extended state model

	resource_configurations parameter removed from PilotManager c`tor

0.13 Release May 19. 2014

	ExTASY demo release

	Support for project / allocation

	Updated / simplified resource files

	Refactored bootstrap mechnism

0.12 Release May 09. 2014

	Updated resource files

	Updated state model

	Closed tickets:
- https://github.com/radical-cybertools/radical.pilot/issues?milestone=12&state=closed

0.11 Release Apr. 29. 2014

	Fixes error in state history reporting

0.10 Release Apr. 29. 2014

	Support for state transition introspection via CU/Pilot state_history

	Cleaned up an streamlined Input and Outpout file transfer workers

	Support for interchangeable pilot agents

	Closed tickets:
- https://github.com/radical-cybertools/radical.pilot/issues?milestone=11&state=closed

0.9 Release Apr. 16. 2014

	Support for output file staging

	Streamlines data model

	More loosely coupled components connected via DB queues

	Closed tickets:
- https://github.com/radical-cybertools/radical.pilot/issues?milestone=10&state=closed

0.8 Release Mar. 24. 2014

	Renamed codebase from sagapilot to radical.pilot

	Added explicit close() calls to PM, UM and Session.

	Cloesed tickets:
- https://github.com/radical-cybertools/radical.pilot/issues?milestone=9&state=closed

0.7 Release Feb. 25. 2014

	Added support for callbacks

	Added support for input file transfer !

	Closed tickets:
- https://github.com/radical-cybertools/radical.pilot/issues?milestone=8&state=closed

0.6 Release Feb. 24. 2014

	BROKEN RELEASE

0.5 Release Feb. 06. 2014

	Tutorial 2 release (Github only)

	Added support for multiprocessing worker

	Support for CU stdout and stderr transfer via MongoDB GridFS

	Closed tickets:
- https://github.com/saga-project/saga-pilot/issues?milestone=7&page=1&state=closed

0.4 Release

	Tutorial 1 release (Github only)

	Consistent naming (sagapilot instead of sinon)

0.1.3 Release

	Github only release:

pip install –upgrade -e git://github.com/saga-project/saga-pilot.git@master#egg=saga-pilot

	Added logging

	Added security context handling

	Closed tickets:
- https://github.com/saga-project/saga-pilot/issues?milestone=3&state=closed

0.1.2 Release

	Github only release:

pip install –upgrade -e git://github.com/saga-project/saga-pilot.git@master#egg=saga-pilot

	Closed tickets:
- https://github.com/saga-project/saga-pilot/issues?milestone=4&state=closed

List of Pre-Configured Resources

RESOURCE_YALE

GRACE_SSH

Grace is a shared-use facility within Yale’s Faculty of Arts and Sciences (FAS).

	Resource label : yale.grace_ssh

	Raw config : resource_yale.json

	Note :

	Default values for ComputePilotDescription attributes:

	queue : shared

	sandbox : $HOME

	access_schema : ssh

	Available schemas : ssh

RESOURCE_VTARC_DT

STAMPEDE_SSH

The XSEDE ‘Stampede’ cluster at TACC (https://www.tacc.utexas.edu/stampede/).

	Resource label : vtarc_dt.stampede_ssh

	Raw config : resource_vtarc_dt.json

	Note : Always set the project attribute in the ComputePilotDescription or the pilot will fail.

	Default values for ComputePilotDescription attributes:

	queue : normal

	sandbox : $WORK

	access_schema : gsissh

	Available schemas : gsissh, ssh, go

RESOURCE_EPSRC

ARCHER_ORTE

The EPSRC Archer Cray XC30 system (https://www.archer.ac.uk/)

	Resource label : epsrc.archer_orte

	Raw config : resource_epsrc.json

	Note : Always set the project attribute in the ComputePilotDescription or the pilot will fail.

	Default values for ComputePilotDescription attributes:

	queue : standard

	sandbox : /work/`id -gn`/`id -gn`/$USER

	access_schema : ssh

	Available schemas : ssh

ARCHER_APRUN

The EPSRC Archer Cray XC30 system (https://www.archer.ac.uk/)

	Resource label : epsrc.archer_aprun

	Raw config : resource_epsrc.json

	Note : Always set the project attribute in the ComputePilotDescription or the pilot will fail.

	Default values for ComputePilotDescription attributes:

	queue : standard

	sandbox : /work/`id -gn`/`id -gn`/$USER

	access_schema : ssh

	Available schemas : ssh

RESOURCE_OSG

XSEDE-VIRT-CLUST

XSEDE OSG Virtual Cluster is a Condor pool overlay on top of OSG resources. (https://portal.xsede.org/OSG-User-Guide).

	Resource label : osg.xsede-virt-clust

	Raw config : resource_osg.json

	Note : Always set the project attribute in the ComputePilotDescription or the pilot will fail.

	Default values for ComputePilotDescription attributes:

	queue : None

	sandbox : $HOME

	access_schema : ssh

	Available schemas : ssh, gsissh

CONNECT

OSG Connect. (https://osgconnect.net).

	Resource label : osg.connect

	Raw config : resource_osg.json

	Note : Always set the project attribute in the ComputePilotDescription or the pilot will fail.

	Default values for ComputePilotDescription attributes:

	queue : None

	sandbox : $HOME

	access_schema : ssh

	Available schemas : ssh, gsissh

RESOURCE_CHAMELEON

CLOUD_VM_YARN

Your Chameleon Cloud VM.

	Resource label : chameleon.cloud_vm_yarn

	Raw config : resource_chameleon.json

	Note : To use the ssh schema, make sure that ssh access to localhost is enabled.

	Default values for ComputePilotDescription attributes:

	queue : None

	sandbox : $HOME

	access_schema : ssh

	Available schemas : ssh

RESOURCE_XSEDE

BRIDGES

The XSEDE ‘Bridges’ cluster at PSC (https://portal.xsede.org/psc-bridges/).

	Resource label : xsede.bridges

	Raw config : resource_xsede.json

	Note : Always set the project attribute in the ComputePilotDescription.

	Default values for ComputePilotDescription attributes:

	queue : normal

	sandbox : $SCRATCH

	access_schema : gsissh

	Available schemas : gsissh, ssh, go

COMET_SPARK

The Comet HPC resource at SDSC ‘HPC for the 99%’ (http://www.sdsc.edu/services/hpc/hpc_systems.html#comet).

	Resource label : xsede.comet_spark

	Raw config : resource_xsede.json

	Note : Always set the project attribute in the ComputePilotDescription or the pilot will fail.

	Default values for ComputePilotDescription attributes:

	queue : compute

	sandbox : $HOME

	access_schema : ssh

	Available schemas : ssh, gsissh

BLACKLIGHT_SSH

The XSEDE ‘Blacklight’ cluster at PSC (https://www.psc.edu/index.php/computing-resources/blacklight).

	Resource label : xsede.blacklight_ssh

	Raw config : resource_xsede.json

	Note : Always set the project attribute in the ComputePilotDescription or the pilot will fail.

	Default values for ComputePilotDescription attributes:

	queue : batch

	sandbox : $HOME

	access_schema : ssh

	Available schemas : ssh, gsissh

GREENFIELD

The XSEDE ‘Greenfield’ cluster at PSC (https://www.psc.edu/index.php/computing-resources/greenfield).

	Resource label : xsede.greenfield

	Raw config : resource_xsede.json

	Note : Always set the project attribute in the ComputePilotDescription or the pilot will fail.

	Default values for ComputePilotDescription attributes:

	queue : batch

	sandbox : $HOME

	access_schema : ssh

	Available schemas : ssh, gsissh

LONESTAR_SSH

The XSEDE ‘Lonestar’ cluster at TACC (https://www.tacc.utexas.edu/resources/hpc/lonestar).

	Resource label : xsede.lonestar_ssh

	Raw config : resource_xsede.json

	Note : Always set the project attribute in the ComputePilotDescription or the pilot will fail.

	Default values for ComputePilotDescription attributes:

	queue : normal

	sandbox : $HOME

	access_schema : ssh

	Available schemas : ssh, gsissh

STAMPEDE2_SSH

The XSEDE ‘Stampede’ cluster at TACC (https://www.tacc.utexas.edu/stampede/).

	Resource label : xsede.stampede2_ssh

	Raw config : resource_xsede.json

	Note : Always set the project attribute in the ComputePilotDescription or the pilot will fail.

	Default values for ComputePilotDescription attributes:

	queue : normal

	sandbox : $WORK

	access_schema : gsissh

	Available schemas : gsissh, ssh

SUPERMIC_SPARK

SuperMIC (pronounced ‘Super Mick’) is Louisiana State University’s (LSU) newest supercomputer funded by the National Science Foundation’s (NSF) Major Research Instrumentation (MRI) award to the Center for Computation & Technology. (https://portal.xsede.org/lsu-supermic)

	Resource label : xsede.supermic_spark

	Raw config : resource_xsede.json

	Note : Partially allocated through XSEDE. Primary access through GSISSH. Allows SSH key authentication too.

	Default values for ComputePilotDescription attributes:

	queue : workq

	sandbox : /work/$USER

	access_schema : gsissh

	Available schemas : gsissh, ssh

WRANGLER_SSH

The XSEDE ‘Wrangler’ cluster at TACC (https://www.tacc.utexas.edu/wrangler/).

	Resource label : xsede.wrangler_ssh

	Raw config : resource_xsede.json

	Note : Always set the project attribute in the ComputePilotDescription or the pilot will fail.

	Default values for ComputePilotDescription attributes:

	queue : normal

	sandbox : $WORK

	access_schema : gsissh

	Available schemas : gsissh, ssh, go

GORDON_SSH

The XSEDE ‘Gordon’ cluster at SDSC (http://www.sdsc.edu/us/resources/gordon/).

	Resource label : xsede.gordon_ssh

	Raw config : resource_xsede.json

	Note : Always set the project attribute in the ComputePilotDescription or the pilot will fail.

	Default values for ComputePilotDescription attributes:

	queue : normal

	sandbox : $HOME

	access_schema : ssh

	Available schemas : ssh, gsissh

COMET_ORTELIB

The Comet HPC resource at SDSC ‘HPC for the 99%’ (http://www.sdsc.edu/services/hpc/hpc_systems.html#comet).

	Resource label : xsede.comet_ortelib

	Raw config : resource_xsede.json

	Note : Always set the project attribute in the ComputePilotDescription or the pilot will fail.

	Default values for ComputePilotDescription attributes:

	queue : compute

	sandbox : $HOME

	access_schema : ssh

	Available schemas : ssh, gsissh

COMET_SSH

The Comet HPC resource at SDSC ‘HPC for the 99%’ (http://www.sdsc.edu/services/hpc/hpc_systems.html#comet).

	Resource label : xsede.comet_ssh

	Raw config : resource_xsede.json

	Note : Always set the project attribute in the ComputePilotDescription or the pilot will fail.

	Default values for ComputePilotDescription attributes:

	queue : compute

	sandbox : $HOME

	access_schema : ssh

	Available schemas : ssh, gsissh

WRANGLER_SPARK

The XSEDE ‘Wrangler’ cluster at TACC (https://www.tacc.utexas.edu/wrangler/).

	Resource label : xsede.wrangler_spark

	Raw config : resource_xsede.json

	Note : Always set the project attribute in the ComputePilotDescription or the pilot will fail.

	Default values for ComputePilotDescription attributes:

	queue : normal

	sandbox : $WORK

	access_schema : gsissh

	Available schemas : gsissh, ssh, go

SUPERMIC_ORTE

SuperMIC (pronounced ‘Super Mick’) is Louisiana State University’s (LSU) newest supercomputer funded by the National Science Foundation’s (NSF) Major Research Instrumentation (MRI) award to the Center for Computation & Technology. (https://portal.xsede.org/lsu-supermic)

	Resource label : xsede.supermic_orte

	Raw config : resource_xsede.json

	Note : Partially allocated through XSEDE. Primary access through GSISSH. Allows SSH key authentication too.

	Default values for ComputePilotDescription attributes:

	queue : workq

	sandbox : /work/$USER

	access_schema : gsissh

	Available schemas : gsissh, ssh

TRESTLES_SSH

The XSEDE ‘Trestles’ cluster at SDSC (http://www.sdsc.edu/us/resources/trestles/).

	Resource label : xsede.trestles_ssh

	Raw config : resource_xsede.json

	Note : Always set the project attribute in the ComputePilotDescription or the pilot will fail.

	Default values for ComputePilotDescription attributes:

	queue : normal

	sandbox : $HOME

	access_schema : ssh

	Available schemas : ssh, gsissh

COMET_ORTE

The Comet HPC resource at SDSC ‘HPC for the 99%’ (http://www.sdsc.edu/services/hpc/hpc_systems.html#comet).

	Resource label : xsede.comet_orte

	Raw config : resource_xsede.json

	Note : Always set the project attribute in the ComputePilotDescription or the pilot will fail.

	Default values for ComputePilotDescription attributes:

	queue : compute

	sandbox : $HOME

	access_schema : ssh

	Available schemas : ssh, gsissh

SUPERMIC_ORTELIB

SuperMIC (pronounced ‘Super Mick’) is Louisiana State University’s (LSU) newest supercomputer funded by the National Science Foundation’s (NSF) Major Research Instrumentation (MRI) award to the Center for Computation & Technology. (https://portal.xsede.org/lsu-supermic)

	Resource label : xsede.supermic_ortelib

	Raw config : resource_xsede.json

	Note : Partially allocated through XSEDE. Primary access through GSISSH. Allows SSH key authentication too.

	Default values for ComputePilotDescription attributes:

	queue : workq

	sandbox : /work/$USER

	access_schema : gsissh

	Available schemas : gsissh, ssh

WRANGLER_YARN

The XSEDE ‘Wrangler’ cluster at TACC (https://www.tacc.utexas.edu/wrangler/).

	Resource label : xsede.wrangler_yarn

	Raw config : resource_xsede.json

	Note : Always set the project attribute in the ComputePilotDescription or the pilot will fail.

	Default values for ComputePilotDescription attributes:

	queue : hadoop

	sandbox : $WORK

	access_schema : gsissh

	Available schemas : gsissh, ssh, go

SUPERMIC_SSH

SuperMIC (pronounced ‘Super Mick’) is Louisiana State University’s (LSU) newest supercomputer funded by the National Science Foundation’s (NSF) Major Research Instrumentation (MRI) award to the Center for Computation & Technology. (https://portal.xsede.org/lsu-supermic)

	Resource label : xsede.supermic_ssh

	Raw config : resource_xsede.json

	Note : Partially allocated through XSEDE. Primary access through GSISSH. Allows SSH key authentication too.

	Default values for ComputePilotDescription attributes:

	queue : workq

	sandbox : /work/$USER

	access_schema : gsissh

	Available schemas : gsissh, ssh

RESOURCE_STFC

JOULE_RUNJOB

The STFC Joule IBM BG/Q system (http://community.hartree.stfc.ac.uk/wiki/site/admin/home.html)

	Resource label : stfc.joule_runjob

	Raw config : resource_stfc.json

	Note : This currently needs a centrally administered outbound ssh tunnel.

	Default values for ComputePilotDescription attributes:

	queue : prod

	sandbox : $HOME

	access_schema : ssh

	Available schemas : ssh

RESOURCE_DAS5

FS1_SSH

The Distributed ASCI Supercomputer 5 (http://www.cs.vu.nl/das5/).

	Resource label : das5.fs1_ssh

	Raw config : resource_das5.json

	Default values for ComputePilotDescription attributes:

	queue : defq

	sandbox : /var/scratch/$USER

	access_schema : ssh

	Available schemas : ssh

RESOURCE_RICE

DAVINCI_SSH

The DAVinCI Linux cluster at Rice University (https://docs.rice.edu/confluence/display/ITDIY/Getting+Started+on+DAVinCI).

	Resource label : rice.davinci_ssh

	Raw config : resource_rice.json

	Note : DAVinCI compute nodes have 12 or 16 processor cores per node.

	Default values for ComputePilotDescription attributes:

	queue : parallel

	sandbox : $SHARED_SCRATCH/$USER

	access_schema : ssh

	Available schemas : ssh

BIOU_SSH

The Blue BioU Linux cluster at Rice University (https://docs.rice.edu/confluence/display/ITDIY/Getting+Started+on+Blue+BioU).

	Resource label : rice.biou_ssh

	Raw config : resource_rice.json

	Note : Blue BioU compute nodes have 32 processor cores per node.

	Default values for ComputePilotDescription attributes:

	queue : serial

	sandbox : $SHARED_SCRATCH/$USER

	access_schema : ssh

	Available schemas : ssh

RESOURCE_LUMC

GB-UI_SSH

LUMC node of Life Science Grid (LSG) (http://doc.grid.surfsara.nl/en/latest/Pages/General/life_science_grid.html).

	Resource label : lumc.gb-ui_ssh

	Raw config : resource_lumc.json

	Note :

	Default values for ComputePilotDescription attributes:

	queue : medium

	sandbox : $HOME

	access_schema : ssh

	Available schemas : ssh, local

SHARK_SSH

Shark Cluster at LUMC (https://git.lumc.nl/shark/SHARK/wikis/home).

	Resource label : lumc.shark_ssh

	Raw config : resource_lumc.json

	Note : Need to specify at least 16GB for the pilot agent to start (pd.memory=16000).

	Default values for ComputePilotDescription attributes:

	queue : all.q

	sandbox : $HOME

	access_schema : ssh

	Available schemas : ssh, local

RESOURCE_ORNL

RHEA

The Cray XK7 supercomputer located at the Oak Ridge Leadership Computing Facility (OLCF), (https://www.olcf.ornl.gov/rhea/)

	Resource label : ornl.rhea

	Raw config : resource_ornl.json

	Note : Requires the use of an RSA SecurID on every connection.

	Default values for ComputePilotDescription attributes:

	queue : batch

	sandbox : $MEMBERWORK/`groups | cut -d' ' -f2`

	access_schema : local

	Available schemas : local, ssh, go

TITAN_ORTE

The Cray XK7 supercomputer located at the Oak Ridge Leadership Computing Facility (OLCF), (https://www.olcf.ornl.gov/titan/)

	Resource label : ornl.titan_orte

	Raw config : resource_ornl.json

	Note : Requires the use of an RSA SecurID on every connection.

	Default values for ComputePilotDescription attributes:

	queue : batch

	sandbox : $MEMBERWORK/`groups | cut -d' ' -f2`

	access_schema : local

	Available schemas : local

RHEA_APRUN

The Cray XK7 supercomputer located at the Oak Ridge Leadership Computing Facility (OLCF), (https://www.olcf.ornl.gov/titan/)

	Resource label : ornl.rhea_aprun

	Raw config : resource_ornl.json

	Note : Requires the use of an RSA SecurID on every connection.

	Default values for ComputePilotDescription attributes:

	queue : batch

	sandbox : $MEMBERWORK/`groups | cut -d' ' -f2`

	access_schema : local

	Available schemas : local

TITAN_APRUN

The Cray XK7 supercomputer located at the Oak Ridge Leadership Computing Facility (OLCF), (https://www.olcf.ornl.gov/titan/)

	Resource label : ornl.titan_aprun

	Raw config : resource_ornl.json

	Note : Requires the use of an RSA SecurID on every connection.

	Default values for ComputePilotDescription attributes:

	queue : batch

	sandbox : $MEMBERWORK/`groups | cut -d' ' -f2`

	access_schema : local

	Available schemas : local

TITAN_ORTELIB

The Cray XK7 supercomputer located at the Oak Ridge Leadership Computing Facility (OLCF), (https://www.olcf.ornl.gov/titan/)

	Resource label : ornl.titan_ortelib

	Raw config : resource_ornl.json

	Note : Requires the use of an RSA SecurID on every connection.

	Default values for ComputePilotDescription attributes:

	queue : batch

	sandbox : $MEMBERWORK/`groups | cut -d' ' -f2`

	access_schema : local

	Available schemas : local

RESOURCE_NCAR

YELLOWSTONE_SSH

The Yellowstone IBM iDataPlex cluster at UCAR (https://www2.cisl.ucar.edu/resources/yellowstone).

	Resource label : ncar.yellowstone_ssh

	Raw config : resource_ncar.json

	Note : We only support one concurrent CU per node currently.

	Default values for ComputePilotDescription attributes:

	queue : premium

	sandbox : $HOME

	access_schema : ssh

	Available schemas : ssh

CHEYENNE

An SGI ICE XA Cluster located at the National Center for Atmospheric Research (NCAR), (https://www2.cisl.ucar.edu/resources/computational-systems/cheyenne)

	Resource label : ncar.cheyenne

	Raw config : resource_ncar.json

	Note : Requires the use of a token from an USB on every connection.

	Default values for ComputePilotDescription attributes:

	queue : regular

	sandbox : $TMPDIR

	access_schema : local

	Available schemas : local

RESOURCE_NCSA

BW_APRUN

The NCSA Blue Waters Cray XE6/XK7 system (https://bluewaters.ncsa.illinois.edu/)

	Resource label : ncsa.bw_aprun

	Raw config : resource_ncsa.json

	Note : Running ‘touch .hushlogin’ on the login node will reduce the likelihood of prompt detection issues.

	Default values for ComputePilotDescription attributes:

	queue : normal

	sandbox : /scratch/sciteam/$USER

	access_schema : gsissh

	Available schemas : gsissh, local

BW_ORTELIB

The NCSA Blue Waters Cray XE6/XK7 system (https://bluewaters.ncsa.illinois.edu/)

	Resource label : ncsa.bw_ortelib

	Raw config : resource_ncsa.json

	Note : Running ‘touch .hushlogin’ on the login node will reduce the likelihood of prompt detection issues.

	Default values for ComputePilotDescription attributes:

	queue : normal

	sandbox : /scratch/sciteam/$USER

	access_schema : gsissh

	Available schemas : gsissh

BW_CCM_SSH

The NCSA Blue Waters Cray XE6/XK7 system in CCM (https://bluewaters.ncsa.illinois.edu/)

	Resource label : ncsa.bw_ccm_ssh

	Raw config : resource_ncsa.json

	Note : Running ‘touch .hushlogin’ on the login node will reduce the likelihood of prompt detection issues.

	Default values for ComputePilotDescription attributes:

	queue : normal

	sandbox : /scratch/sciteam/$USER

	access_schema : gsissh

	Available schemas : gsissh

BW_ORTE

The NCSA Blue Waters Cray XE6/XK7 system (https://bluewaters.ncsa.illinois.edu/)

	Resource label : ncsa.bw_orte

	Raw config : resource_ncsa.json

	Note : Running ‘touch .hushlogin’ on the login node will reduce the likelihood of prompt detection issues.

	Default values for ComputePilotDescription attributes:

	queue : normal

	sandbox : /scratch/sciteam/$USER

	access_schema : gsissh

	Available schemas : gsissh, local

RESOURCE_DAS4

FS2_SSH

The Distributed ASCI Supercomputer 4 (http://www.cs.vu.nl/das4/).

	Resource label : das4.fs2_ssh

	Raw config : resource_das4.json

	Default values for ComputePilotDescription attributes:

	queue : all.q

	sandbox : $HOME

	access_schema : ssh

	Available schemas : ssh

RESOURCE_FUB

ALLEGRO_RSH

The FU Berlin ‘Allegro’ cluster at IMP (http://www.allegro.imp.fu-berlin.de).

	Resource label : fub.allegro_rsh

	Raw config : resource_fub.json

	Note : This one uses experimental RSH support to execute tasks.

	Default values for ComputePilotDescription attributes:

	queue : micro

	sandbox : $HOME/NO_BACKUP

	access_schema : ssh

	Available schemas : ssh

RESOURCE_IU

BIGRED2_APRUN

Indiana University’s Cray XE6/XK7 cluster (https://kb.iu.edu/d/bcqt).

	Resource label : iu.bigred2_aprun

	Raw config : resource_iu.json

	Default values for ComputePilotDescription attributes:

	queue : None

	sandbox : $HOME

	access_schema : ssh

	Available schemas : ssh

BIGRED2_CCM_SSH

Indiana University’s Cray XE6/XK7 cluster in Cluster Compatibility Mode (CCM) (https://kb.iu.edu/d/bcqt).

	Resource label : iu.bigred2_ccm_ssh

	Raw config : resource_iu.json

	Default values for ComputePilotDescription attributes:

	queue : None

	sandbox : /N/dc2/scratch/$USER

	access_schema : ssh

	Available schemas : ssh

RESOURCE_LRZ

SUPERMUC_SSH

The SuperMUC petascale HPC cluster at LRZ, Munich (http://www.lrz.de/services/compute/supermuc/).

	Resource label : lrz.supermuc_ssh

	Raw config : resource_lrz.json

	Note : Default authentication to SuperMUC uses X509 and is firewalled, make sure you can gsissh into the machine from your registered IP address. Because of outgoing traffic restrictions your MongoDB needs to run on a port in the range 20000 to 25000.

	Default values for ComputePilotDescription attributes:

	queue : test

	sandbox : $HOME

	access_schema : gsissh

	Available schemas : gsissh, ssh

RESOURCE_NERSC

HOPPER_CCM_SSH

The NERSC Hopper Cray XE6 in Cluster Compatibility Mode (https://www.nersc.gov/users/computational-systems/hopper/)

	Resource label : nersc.hopper_ccm_ssh

	Raw config : resource_nersc.json

	Note : For CCM you need to use special ccm_ queues.

	Default values for ComputePilotDescription attributes:

	queue : ccm_queue

	sandbox : $SCRATCH

	access_schema : ssh

	Available schemas : ssh

EDISON_ORTE

The NERSC Edison Cray XC30 (https://www.nersc.gov/users/computational-systems/edison/)

	Resource label : nersc.edison_orte

	Raw config : resource_nersc.json

	Note :

	Default values for ComputePilotDescription attributes:

	queue : regular

	sandbox : $SCRATCH

	access_schema : ssh

	Available schemas : ssh, go

HOPPER_ORTE

The NERSC Hopper Cray XE6 (https://www.nersc.gov/users/computational-systems/hopper/)

	Resource label : nersc.hopper_orte

	Raw config : resource_nersc.json

	Note :

	Default values for ComputePilotDescription attributes:

	queue : regular

	sandbox : $SCRATCH

	access_schema : ssh

	Available schemas : ssh, go

HOPPER_APRUN

The NERSC Hopper Cray XE6 (https://www.nersc.gov/users/computational-systems/hopper/)

	Resource label : nersc.hopper_aprun

	Raw config : resource_nersc.json

	Note : Only one CU per node in APRUN mode

	Default values for ComputePilotDescription attributes:

	queue : regular

	sandbox : $SCRATCH

	access_schema : ssh

	Available schemas : ssh

EDISON_CCM_SSH

The NERSC Edison Cray XC30 in Cluster Compatibility Mode (https://www.nersc.gov/users/computational-systems/edison/)

	Resource label : nersc.edison_ccm_ssh

	Raw config : resource_nersc.json

	Note : For CCM you need to use special ccm_ queues.

	Default values for ComputePilotDescription attributes:

	queue : ccm_queue

	sandbox : $SCRATCH

	access_schema : ssh

	Available schemas : ssh

EDISON_APRUN

The NERSC Edison Cray XC30 (https://www.nersc.gov/users/computational-systems/edison/)

	Resource label : nersc.edison_aprun

	Raw config : resource_nersc.json

	Note : Only one CU per node in APRUN mode

	Default values for ComputePilotDescription attributes:

	queue : regular

	sandbox : $SCRATCH

	access_schema : ssh

	Available schemas : ssh, go

RESOURCE_LOCAL

LOCALHOST_SPARK_ANACONDA

Your local machine gets spark.

	Resource label : local.localhost_spark_anaconda

	Raw config : resource_local.json

	Note : To use the ssh schema, make sure that ssh access to localhost is enabled.

	Default values for ComputePilotDescription attributes:

	queue : None

	sandbox : $HOME

	access_schema : local

	Available schemas : local, ssh

LOCALHOST_ORTELIB

Your local machine.

	Resource label : local.localhost_ortelib

	Raw config : resource_local.json

	Note : To use the ssh schema, make sure that ssh access to localhost is enabled.

	Default values for ComputePilotDescription attributes:

	queue : None

	sandbox : $HOME

	access_schema : local

	Available schemas : local, ssh

LOCALHOST_SPARK

Your local machine gets spark.

	Resource label : local.localhost_spark

	Raw config : resource_local.json

	Note : To use the ssh schema, make sure that ssh access to localhost is enabled.

	Default values for ComputePilotDescription attributes:

	queue : None

	sandbox : $HOME

	access_schema : local

	Available schemas : local, ssh

LOCALHOST_APRUN

Your local machine.

	Resource label : local.localhost_aprun

	Raw config : resource_local.json

	Note : To use the ssh schema, make sure that ssh access to localhost is enabled.

	Default values for ComputePilotDescription attributes:

	queue : None

	sandbox : $HOME

	access_schema : local

	Available schemas : local, ssh

LOCALHOST

Your local machine.

	Resource label : local.localhost

	Raw config : resource_local.json

	Note : To use the ssh schema, make sure that ssh access to localhost is enabled.

	Default values for ComputePilotDescription attributes:

	queue : None

	sandbox : $HOME

	access_schema : local

	Available schemas : local, ssh

LOCALHOST_YARN

Your local machine.

	Resource label : local.localhost_yarn

	Raw config : resource_local.json

	Note : To use the ssh schema, make sure that ssh access to localhost is enabled.

	Default values for ComputePilotDescription attributes:

	queue : None

	sandbox : $HOME

	access_schema : local

	Available schemas : local, ssh

LOCALHOST_ANACONDA

Your local machine.

	Resource label : local.localhost_anaconda

	Raw config : resource_local.json

	Note : To use the ssh schema, make sure that ssh access to localhost is enabled.

	Default values for ComputePilotDescription attributes:

	queue : None

	sandbox : $HOME

	access_schema : local

	Available schemas : local, ssh

LOCALHOST_ORTE

Your local machine.

	Resource label : local.localhost_orte

	Raw config : resource_local.json

	Note : To use the ssh schema, make sure that ssh access to localhost is enabled.

	Default values for ComputePilotDescription attributes:

	queue : None

	sandbox : $HOME

	access_schema : local

	Available schemas : local, ssh

RESOURCE_FUTUREGRID

DELTA_SSH

FutureGrid Supermicro GPU cluster (https://futuregrid.github.io/manual/hardware.html).

	Resource label : futuregrid.delta_ssh

	Raw config : resource_futuregrid.json

	Note : Untested.

	Default values for ComputePilotDescription attributes:

	queue : delta

	sandbox : $HOME

	access_schema : ssh

	Available schemas : ssh

XRAY_APRUN

FutureGrid Cray XT5m cluster (https://futuregrid.github.io/manual/hardware.html).

	Resource label : futuregrid.xray_aprun

	Raw config : resource_futuregrid.json

	Note : One needs to add ‘module load torque’ to ~/.profile on xray.

	Default values for ComputePilotDescription attributes:

	queue : batch

	sandbox : /scratch/$USER

	access_schema : ssh

	Available schemas : ssh

INDIA_SSH

The FutureGrid ‘india’ cluster (https://futuregrid.github.io/manual/hardware.html).

	Resource label : futuregrid.india_ssh

	Raw config : resource_futuregrid.json

	Default values for ComputePilotDescription attributes:

	queue : batch

	sandbox : $HOME

	access_schema : ssh

	Available schemas : ssh

XRAY_CCM

FutureGrid Cray XT5m cluster in Cluster Compatibility Mode (CCM) (https://futuregrid.github.io/manual/hardware.html).

	Resource label : futuregrid.xray_ccm

	Raw config : resource_futuregrid.json

	Note : One needs to add ‘module load torque’ to ~/.profile on xray.

	Default values for ComputePilotDescription attributes:

	queue : ccm_queue

	sandbox : /scratch/$USER

	access_schema : ssh

	Available schemas : ssh

ECHO_SSH

FutureGrid Supermicro ScaleMP cluster (https://futuregrid.github.io/manual/hardware.html).

	Resource label : futuregrid.echo_ssh

	Raw config : resource_futuregrid.json

	Note : Untested

	Default values for ComputePilotDescription attributes:

	queue : echo

	sandbox : $HOME

	access_schema : ssh

	Available schemas : ssh

BRAVO_SSH

FutureGrid Hewlett-Packard ProLiant compute cluster (https://futuregrid.github.io/manual/hardware.html).

	Resource label : futuregrid.bravo_ssh

	Raw config : resource_futuregrid.json

	Note : Works only up to 64 cores, beyond that Torque configuration is broken.

	Default values for ComputePilotDescription attributes:

	queue : bravo

	sandbox : $HOME

	access_schema : ssh

	Available schemas : ssh

RESOURCE_RADICAL

TWO

radical server 2

	Resource label : radical.two

	Raw config : resource_radical.json

	Default values for ComputePilotDescription attributes:

	queue : batch

	sandbox : $HOME

	access_schema : ssh

	Available schemas : ssh, local

TUTORIAL

Our private tutorial VM on EC2

	Resource label : radical.tutorial

	Raw config : resource_radical.json

	Default values for ComputePilotDescription attributes:

	queue : batch

	sandbox : $HOME

	access_schema : ssh

	Available schemas : ssh, local

ONE

radical server 1

	Resource label : radical.one

	Raw config : resource_radical.json

	Default values for ComputePilotDescription attributes:

	queue : batch

	sandbox : $HOME

	access_schema : ssh

	Available schemas : ssh, local

Application Control Flow with Callbacks

Programming with Callbacks

TODO

Launching ComputePilots on HTCondor Grids

This will be Mark’s chapter ;-)

Disconnecting and Reconnecting

Error Handling Strategies

Error Handling in RADICAL-Pilot

#!/usr/bin/env python

__copyright__ = "Copyright 2013-2014, http://radical.rutgers.edu"
__license__ = "MIT"

import sys
import radical.pilot as rp

READ: The RADICAL-Pilot documentation:
http://radicalpilot.readthedocs.org/en/latest
#
Try running this example with RADICAL_PILOT_VERBOSE=debug set if
you want to see what happens behind the scences!

#--
#
def pilot_state_cb (pilot, state):
 """ this callback is invoked on all pilot state changes """

 # Callbacks happen in a different thread than the main application thread --
 # they are truly asynchronous. That means, however, that a 'sys.exit()'
 # will not end the application, but will end the thread (in this case the
 # pilot_manager_controller thread). For that reason we wrapped all threads
 # in their own try/except clauses, and then translate the `sys.exit()` into an
 # 'thread.interrupt_main()' call -- this will raise a 'KeyboardInterrupt' in
 # the main thread which can be interpreted by your application, for example
 # to initiate a clean shutdown via `session.close()` (see code later below.)
 # The same `KeyboardShutdown` will also be raised when you interrupt the
 # application via `^C`.
 #
 # Note that other error handling semantics is available, depending on your
 # application's needs. The application could for example spawn
 # a replacement pilot at this point, or reduce the number of compute units
 # to match the remaining set of pilots.

 print "[Callback]: ComputePilot '%s' state: %s." % (pilot.uid, state)

 if state == rp.FAILED:
 print 'Pilot failed -- ABORT! ABORT! ABORT!'
 print pilot.log[-1] # Get the last log message
 sys.exit (1)

#--
#
def unit_state_cb (unit, state):
 """ this callback is invoked on all unit state changes """

 # The principle for unit state callbacks is exactly the same as for the
 # pilot state callbacks -- only that they are invoked by the unit manager on
 # changes of compute unit states.
 #
 # The example below does not really create any ComputeUnits, we only include
 # the callback here for documentation on the principles of error handling.
 #
 # Note that other error handling semantics is available, depending on your
 # application's needs. The application could for example spawn replacement
 # compute units, or spawn a pilot on a different resource which might be
 # better equipped to handle the unit payload.

 print "[Callback]: ComputeUnit '%s' state: %s." % (unit.uid, state)

 if state == rp.FAILED:
 print 'Unit failed -- ABORT! ABORT! ABORT!'
 print 'stderr: %s' % unit.stderr # Get the unit's stderr
 sys.exit (1)

#---
#
if __name__ == "__main__":
 # This example shows how simple error handling can be implemented
 # synchronously using blocking wait() calls.
 #
 # The code launches a pilot with 128 cores on 'localhost'. Unless localhost
 # has 128 or more cores available, this is bound to fail. This example shows
 # how this error can be caught and handled.

 # we can optionally pass session name to RP
 if len(sys.argv) > 1:
 session_name = sys.argv[1]
 else:
 session_name = None

 # Create a new session. No need to try/except this: if session creation
 # fails, there is not much we can do anyways...
 session = rp.Session(uid=session_name)
 print "session id: %s" % session.uid

 # all other pilot code is now tried/excepted. If an exception is caught, we
 # can rely on the session object to exist and be valid, and we can thus tear
 # the whole RP stack down via a 'session.close()' call in the 'finally'
 # clause...
 try:

 # do pilot thingies
 umgr = rp.UnitManager(session=session)
 pmgr = rp.PilotManager(session=session)

 # Register our callbacks with the managers. The callbacks will get
 # called every time any of the pilots or units change their state
 # -- in particular also on failing ones.
 umgr.register_callback(unit_state_cb)
 pmgr.register_callback(pilot_state_cb)

 # Create a local pilot.
 pd = rp.ComputePilotDescription()
 pd.resource = "local.localhost"
 pd.cores = 1
 pd.runtime = 60

 pilot = pmgr.submit_pilots(pd)
 umgr.add_pilots(pilot)

 # we submit one compute unit which will just fail
 cud = rp.ComputeUnitDescription()
 cud.executable = '/bin/fail'

 cuds=list()
 for i in range(100):
 cuds.append(cud)

 # submit the unit...
 cus = umgr.submit_units(cuds)

 # ...and wait for it's successfull 'completion', ie. forever
 state = umgr.wait_units (state=rp.FINAL)

 except Exception as e:
 # Something unexpected happened in the pilot code above
 print "caught Exception: %s" % e
 raise

 except (KeyboardInterrupt, SystemExit) as e:
 # the callback called sys.exit(), and we can here catch the
 # corresponding KeyboardInterrupt exception for shutdown. We also catch
 # SystemExit (which gets raised if the main threads exits for some other
 # reason).
 print "need to exit now: %s" % e

 finally:
 # always clean up the session, no matter if we caught an exception or
 # not.
 print "closing session"
 session.close ()

 # the above is equivalent to
 #
 # session.close (cleanup=True, terminate=True)
 #
 # it will thus both clean out the session's database record, and kill
 # all remaining pilots (none in our example).

#---

K-Means Clustering

Introduction

This example implements the k-means algorithm using the RADICAL-Pilot API.

Obtaining the code

To download the source files of k-means algorithm:

curl --insecure -Os https://raw.githubusercontent.com/radical-cybertools/radical.pilot/readthedocs/examples/kmeans/k-means.py
curl --insecure -Os https://raw.githubusercontent.com/radical-cybertools/radical.pilot/readthedocs/examples/kmeans/clustering_the_elements.py
curl --insecure -Os https://raw.githubusercontent.com/radical-cybertools/radical.pilot/readthedocs/examples/kmeans/finding_the_new_centroids.py

And to download an example dataset:

curl --insecure -Os https://raw.githubusercontent.com/radical-cybertools/radical.pilot/readthedocs/examples/kmeans/dataset4.in

Running the example

To give it a test drive try via command line the following command:

python k-means.py 3

where 3 is the number of clusters the user wants to create.

More About the Algorithm

This application creates the clusters of the elements found in the dataset4.in
file. You can create your own file or create a new dataset file using the
following generator:

curl --insecure -Os https://raw.githubusercontent.com/radical-cybertools/radical.pilot/readthedocs/examples/kmeans/creating_dataset.py

Run via command line:

python creating_dataset.py <number_of_elements>

The algorithm takes the elements from the dataset4.in file. Then, it chooses
the first k centroids using the quickselect algorithm. It divides into
number_of_cores files the initial file and pass each file as an argument to
each Compute Unit. Every Compute Unit find in which cluster every element
belongs to and creates k different sums of the elements coordinates. and
returns this sum. Then, we sum all the sums of the CUs, and find the average
elements who are closest to the new centroids. Afterwards, we do the same
decomposition, but this time we try to find the new centroids. From each CU
we find the nearest element to each centroid, and return them to the main
program. Then we compare the results of all the CUs, and we decided who are
the new centroids. If we have convergence we stop the algorithm, otherwise we
start a new iteration.

Mandelbrot set

Requirements

This Mandelbrot example needs the PIL library for both the “application side” and the “CU side”.
For the application side you need to install the Pillow module in the same virtual environment as you have installed RADICAL-Pilot into:

pip install Pillow

The examples are constructed in such a way that PIL is dynamically installed in the CU environment; more on that later.

Obtaining the code

Download the mandelbrot example via command line:

curl --insecure -Os https://raw.githubusercontent.com/radical-cybertools/radical.pilot/readthedocs/examples/mandelbrot/mandelbrot_pilot_cores.py
curl --insecure -Os https://raw.githubusercontent.com/radical-cybertools/radical.pilot/readthedocs/examples/mandelbrot/mandel_lines.py

Customizing the example

Open the file mandelbrot_pilot_cores.py with your favorite editor.
There is a critical section that must be filled in by the user.
About halfway of this file it says, “BEGIN REQUIRED CU SETUP.”
This section defines the actual tasks to be executed by the pilot.

Let’s discuss the above example.
We define our executable as “python”.
Next, we need to provide the arguments.
In this case, mandel_lines.py is the python script that creates parts of the mandelbrot fractal.
The other arguments are the variables that the mandel_lines.py program needs in order to be executed.
Note that this block of code is in a python for loop, therefore, e.g. “i” corresponds to what iteration we are on.
This is a parallel code, the python uses as many cores as we define,
(now we defined cores=4) to create smaller parts of the fractal simultaneously.

More About the Algorithm

This algorithm takes the takes the parameters of the Mandelbrot fractal and decompose the image into n different parts, where n is the number of the cores of the system. Then it runs for every part the mandelbrot Generator Code which is the mandel_lines.py. The mandel_lines.py creates n Images and then we compose the n images into one. The whole fractal Image. For every part of the image we create one Compute Unit.

Run the example

Save the file and executed:

python mandelbrot_pilot_cores.py 1024 1024 0 1024 0 1024

The parameters are the following: imgX, imgY: the dimensions of the mandelbrot image, e.g. 1024, 1024 xBeg, xEnd: the x-axis portion of the (sub-)image to calculate yBeg, yEnd: the y-axis portion of the (sub-)image to calculate

The output should look something like this:

Initializing Pilot Manager ...
Submitting Compute Pilot to Pilot Manager ...
Initializing Unit Manager ...
Registering Compute Pilot with Unit Manager ...
Submit Compute Units to Unit Manager ...
Waiting for CUs to complete ...
...

All Compute Units completed successfully! Now..
Stitching together the whole fractal to : mandelbrot_full.gif
Images is now saved at the working directory..
Session closed, exiting now ...

When you finish the execution you may find the image in your working directory: mandelbrot_full.gif

[image: https://raw.githubusercontent.com/radical-cybertools/radical.pilot/readthedocs/docs/source/images/mandelbrot_full.gif]

Executing Multicore / Multithreaded ComputeUnits

Multithreaded Applications

MPI Applications

To define an MPI ComputeUnit, all you need to do is to set the cores and the
mpi arguments in the ComputeUnitDescription.

pdesc = radical.pilot.ComputeUnitDescription()
[...]
pdesc.mpi = True
pdesc.cores = 32

	This example uses this simple MPI4Py example as MPI executable

	(requires MPI4Py installed on the remote cluster):

Executing Multiple Commands in a Single ComputeUnit

There are scenarios in which you might want to execute more than one command in
a ComputeUnit. For example, you might have to create and change into a
directory or load a module or a specific version of a software package before
you call your main executable.

In RADICAL-Pilot this can be easily achieved by using /bin/bash as the
executable in the radical.pilot.ComputeUnitDescription and either pass
a shell script directly as a string argument or transfer a shell script file
as part of the ComputeUnit. The former works well for a small set of simple
commands, while the second works best for more complex scripts.

Using /bin/bash as Executable

TODO - explain -c and -l

cu = radical.pilot.ComputeUnitDescription()
cu.executable = "/bin/bash"
cu.arguments = ["-l", "-c", " this && and && that """]
cu.cores = 1

Using a Shell-Script File

TODO

TODO

Launching Remote / HPC ComputePilots

This chapter describes how to use RADICAL-Pilot to execute ComputeUnits
on ComputePilots running on one or more distributed HPC
clusters.

As a pilot-job system, RADICAL-Pilot aims to provide a programmable resource
overlay that allows a user to efficiently execute their workloads (tasks)
transparently across one or more distributed resources.

RADICAL-Pilot has been developed with HPC (High-Performance Computing) clusters
as the primary type of distributed resources in mind. Currently RADICAL-Pilot
supports HPC clusters running the following queuing systems:

	PBS / PBS Pro

	LSF

	SLURM

	Sun Grid Engine

	IBM LoadLeveler

Note

RADICAL-Pilot also provides limited support for Grid-style resources
based on HTCondor. For more information checkout
Launching ComputePilots on HTCondor Grids.

Authentication and Security Contexts

RADICAL-Pilot’s remote capabilities are built to a large extend on top of SSH and
SFTP. ComputePilot agents are transferred on-the-fly via SFTP and launched via
SSH on the remote clusters. Once a ComputePilot agent has been started, the
rest of the communication between RADICAL-Pilot and the agent happens through
MongoDB (see diagram below).

+--------------------------------------+
| RADICAL-Pilot |
+--------------------------------------+
 ^ |
 | <MDB> | <SSH/SFTP>
 v |
 (~~~~~~~~~) +-----|---------+
 () | HPC|Cluster |
 (MongoDB) |-----v---------|
 () <MDB> | +~~~~~~~+ |
 (_________)<----------->| Agent | |
 | +~~~~~~~+ |
 +---------------+

In order to allow RADICAL-Pilot to launch ComputePilot agents on a remote host
via SSH, you need to provided it with the right credentials. This is done via
the radical.pilot.Context class.

Note

In order for Context to work, you need to be able to manually
SSH into the target host, i.e., you need to have either a username
and password or a public / private key set for the host. The
most practical way is to set up password-less public-key authentication
on the remote host. More about password-less keys can be found
HERE [http://www.debian-administration.org/articles/152].

Assuming that you have password-less public-key authentication set up for
a remote host, the most common way to use Context is to set the
user name you use on the remote host:

session = radical.pilot.Session(database_url=DBURL)

c = radical.pilot.Context('ssh')
c.user_id = "tg802352"
session.add_context(c)

Once you have added a credential to a session, it is available to all
PilotManagers that are created withing this session.

Launching an HPC ComputePilot

You can describe a radical.pilot.ComputePilot via a radical.pilot.ComputePilotDescription to the PilotManager:

pdesc = radical.pilot.ComputePilotDescription()
pdesc.resource = "xsede.stampede"
pdesc.runtime = 15
pdesc.cores = 32

pilot = pmgr.submit_pilots(pdesc)

Launching Multiple ComputePilots

Scheduling ComputeUnits Across Multiple ComputePilots

The Complete Example

Warning

Make sure to adjust … before you attempt to run it.

Simple Bag-of-Tasks on Multiple Machines

This example assumes that you are familiar with submitting at least one RADICAL-Pilot
to a remote resource and moves forward explaining how to submit multiple pilots
to multiple resources.

The simplest usage of a pilot-job system is to submit multiple identical tasks
(a ‘Bag of Tasks’) collectively, i.e. as one big job! Such usage arises for
example to perform either a parameter sweep job or a set of ensemble simulation.

We will create an example which submits N jobs using RADICAL-Pilot to M different
resources. The jobs are all identical, except that they each record their number and
where they run in their output. This type of run is very useful if you are running
many jobs using the same executable (but perhaps with different input files).
Rather than submit each job individually to the queuing systems and then wait for
every job to become active and complete, you submit multiple container jobs (called Pilots)
that reserve the number of cores needed to run all of your jobs across multiple platforms.
When this pilots become active, your tasks (which are named ‘Compute Units’ or ‘CUs’) are pulled by
RADICAL-Pilot from the MongoDB server and executed.

Launching Multiple ComputePilots

You can describe multiple radical.pilot.ComputePilot save them to a list and submit them via a radical.pilot.ComputePilotDescription to the PilotManager:

pilot_list=list()

pdesc = radical.pilot.ComputePilotDescription()
pdesc.resource = "xsede.comet"
pdesc.runtime = 10
pdesc.cores = 12

pilot_list.append(pdesc)

pdesc2 = radical.pilot.ComputePilotDescription()
pdesc2.resource = "xsede.gordon"
pdesc2.runtime = 10
pdesc2.cores = 16

pilot_list.append(pdesc2)

pilots = pmgr.submit_pilots(pilot_list)

Warning

Make sure that you have the same user name to all the resources you are submitting and add only one context to the Session

Scheduling ComputeUnits Across Multiple ComputePilots

In order to be able to schedule ComputeUnits to multiple ComputePilots, you first need
to select one of the schedulers that support multi-pilot submission when you define
the radical.pilot.UnitManager. In our example we use the Round-Robin
scheduler.

Preparation

Before running the example, create a config file under your .ssh folder in the following manner:

	..code-block:: bash

	
	host host1.name

	user = username_host1

	host host2.name

	user = username_host2

Download the file simple_bot_mult_mach.py with the following command:

curl -O https://raw.githubusercontent.com/radical-cybertools/radical.pilot/master/docs/simple_bot_mult_res.py

Open the file simple_bot_multi_mach.py with your favorite editor. The example should
work right out of the box on your local machine. However, if you want to try it
out with different resources, like remote HPC clusters, look for the sections
marked:

----- CHANGE THIS -- CHANGE THIS -- CHANGE THIS -- CHANGE THIS ------

and change the code below accordging to the instructions in the comments.

Execution

This assumes you have installed RADICAL-Pilot either globally or in a
Python virtualenv. You also need access to a MongoDB server.

Set the RADICAL_PILOT_DBURL environment variable in your shell to the
MongoDB server you want to use, for example:

export RADICAL_PILOT_DBURL=mongodb://<user>:<pass>@<mongodb_server>:27017/

If RADICAL-Pilot is installed and the MongoDB URL is set, you should be good
to run your program:

python simple_bot_multi_mach.py

The output should look something like this:

Initializing Pilot Manager ...
Submitting Compute Pilots to Pilot Manager ...
Initializing Unit Manager ...
Registering Compute Pilots with Unit Manager ...
Submit Compute Units to Unit Manager ...
Waiting for CUs to complete ...
...
Waiting for CUs to complete ...
All CUs completed successfully!
Closed session, exiting now ...

Logging and Debugging

Since working with distributed systems is inherently complex and much of the
complexity is hidden within RADICAL-Pilot, it is necessary to do a lot of
internal logging. By default, logging output is disabled, but if something goes
wrong or if you’re just curious, you can enable the logging output by setting
the environment variable RADICAL_PILOT_VERBOSE to a value between CRITICAL
(print only critical messages) and DEBUG (print all messages). For more details
on logging, see under ‘Debugging’ in chapter Developer Documentation.

Give it a try with the above example:

RADICAL_PILOT_VERBOSE=DEBUG python simple_bot.py

The Complete Example

Warning

Make sure to adjust … before you attempt to run it.

#!/usr/bin/env python

__copyright__ = "Copyright 2014-2015, http://radical.rutgers.edu"
__license__ = "MIT"

import sys
import radical.pilot as rp

""" DESCRIPTION: Tutorial 1: A Simple Workload consisting of a Bag-of-Tasks
 submitted to multiple machines
"""

READ: The RADICAL-Pilot documentation:
http://radicalpilot.readthedocs.org/en/latest
#
Try running this example with RADICAL_PILOT_VERBOSE=debug set if
you want to see what happens behind the scences!

#--
#
def pilot_state_cb (pilot, state):

 if not pilot:
 return

 print "[Callback]: ComputePilot '%s' state: %s." % (pilot.uid, state)

 if state == rp.FAILED:
 sys.exit (1)

#--
#
def unit_state_cb (unit, state):

 if not unit:
 return

 global CNT

 print "[Callback]: unit %s on %s: %s." % (unit.uid, unit.pilot_id, state)

 if state == rp.FAILED:
 print "stderr: %s" % unit.stderr
 sys.exit(2)

#--
#
if __name__ == "__main__":

 # we can optionally pass session name to RP
 if len(sys.argv) > 1:
 session_name = sys.argv[1]
 else:
 session_name = None

 # Create a new session. No need to try/except this: if session creation
 # fails, there is not much we can do anyways...
 session = rp.Session(name=session_name)
 print "session id: %s" % session.uid

 # all other pilot code is now tried/excepted. If an exception is caught, we
 # can rely on the session object to exist and be valid, and we can thus tear
 # the whole RP stack down via a 'session.close()' call in the 'finally'
 # clause...
 try:

 # ----- CHANGE THIS -- CHANGE THIS -- CHANGE THIS -- CHANGE THIS ------
 #
 # Change the user name below if you are using a remote resource
 # and your username on that resource is different from the username
 # on your local machine.
 #
 c = rp.Context('ssh')
 c.user_id = "username"
 #c.user_pass = "PutYourPasswordHere"
 session.add_context(c)

 # Add a Pilot Manager. Pilot managers manage one or more ComputePilots.
 print "Initializing Pilot Manager ..."
 pmgr = rp.PilotManager(session=session)

 # Register our callback with the PilotManager. This callback will get
 # called every time any of the pilots managed by the PilotManager
 # change their state.
 pmgr.register_callback(pilot_state_cb)

 # ----- CHANGE THIS -- CHANGE THIS -- CHANGE THIS -- CHANGE THIS ------
 #
 # If you want to run this example on XSEDE Gordon and Comet, you have
 # to add your allocation ID by setting the project attribute for each pilot
 # description ot it.
 #
 # A list of preconfigured resources can be found at:
 # http://radicalpilot.readthedocs.org/en/latest/machconf.html#preconfigured-resources
 #

 # ----- CHANGE THIS -- CHANGE THIS -- CHANGE THIS -- CHANGE THIS ------
 # The pilot_list will contain the description of the pilot that will be
 # submitted
 pilot_list=list()

 # Create the description of the first pilot and add it to the list
 pdesc = rp.ComputePilotDescription ()
 pdesc.resource = "xsede.gordon" # NOTE: This is a "label", not a hostname
 pdesc.runtime = 10 # minutes
 pdesc.cores = 1
 pdesc.cleanup = True
 pdesc.project = ''
 pilot_list.append(pdesc)

 # Create the description of the secind pilot and add it to the list
 pdesc2 = rp.ComputePilotDescription ()
 pdesc2.resource = "xsede.comet" # NOTE: This is a "label", not a hostname
 pdesc2.runtime = 10 # minutes
 pdesc2.cores = 1
 pdesc2.cleanup = True
 pdesc2.project = ''
 pilot_list.append(pdesc2)

 # Continue adding pilot by creating a new descrption and appending it to
 # the list.

 # Submit the pilot list to the Pilot Manager. Actually all the pilots are
 # submitted to the Pilot Manager at once.
 print "Submitting Compute Pilots to Pilot Manager ..."
 pilots = pmgr.submit_pilots(pilot_list)

 # Combine the ComputePilot, the ComputeUnits and a scheduler via
 # a UnitManager object. The scheduler that supports multi-pilot sessions
 # is Round Robin. Direct Submittion does not.
 print "Initializing Unit Manager ..."
 umgr = rp.UnitManager (session=session,
 scheduler=rp.SCHEDULER_ROUND_ROBIN)

 # Register our callback with the UnitManager. This callback will get
 # called every time any of the units managed by the UnitManager
 # change their state.
 umgr.register_callback(unit_state_cb)

 # Add the created ComputePilot to the UnitManager.
 print "Registering Compute Pilots with Unit Manager ..."
 umgr.add_pilots(pilots)

 NUMBER_JOBS = 64 # the total number of cus to run

 # submit CUs to pilot job
 cudesc_list = []
 for i in range(NUMBER_JOBS):

 # -------- BEGIN USER DEFINED CU DESCRIPTION --------- #
 cudesc = rp.ComputeUnitDescription()
 cudesc.environment = {'CU_NO': i}
 cudesc.executable = "/bin/echo"
 cudesc.arguments = ['I am CU number $CU_NO from $HOSTNAME']
 cudesc.cores = 1
 # -------- END USER DEFINED CU DESCRIPTION --------- #

 cudesc_list.append(cudesc)

 # Submit the previously created ComputeUnit descriptions to the
 # PilotManager. This will trigger the selected scheduler to start
 # assigning ComputeUnits to the ComputePilots.
 print "Submit Compute Units to Unit Manager ..."
 cu_set = umgr.submit_units (cudesc_list)

 print "Waiting for CUs to complete ..."
 umgr.wait_units()
 print "All CUs completed successfully!"

 except Exception as e:
 # Something unexpected happened in the pilot code above
 print "caught Exception: %s" % e
 raise

 except (KeyboardInterrupt, SystemExit) as e:
 # the callback called sys.exit(), and we can here catch the
 # corresponding KeyboardInterrupt exception for shutdown. We also catch
 # SystemExit (which gets raised if the main threads exits for some other
 # reason).
 print "need to exit now: %s" % e

 finally:
 # always clean up the session, no matter if we caught an exception or
 # not.
 print "closing session"
 session.close ()

 # the above is equivalent to
 #
 # session.close (cleanup=True, terminate=True)
 #
 # it will thus both clean out the session's database record, and kill
 # all remaining pilots (none in our example).

#---

 _static/up.png

_images/00_getting_started.png
Getting Started (RP version v0.36.RCL

create session rp.session.cameo.merzky.016719.0000 ok
read config ok

submit pilots

create pilot manager ok
create pilot description \
create pilot description [local.localhost:64] ok

ok
submit 1 pilot(s) . ok

submit units

create unit manager ok
2dd 1 pilot(s) ok
create 128 unit description(s

PRI ok
submit 128 unit(s)

gather results

wait for 128 unit(s)
B
N ok

finalize

closing session rp.session.cameo.merzky.016719.0000 N
close pilot manager \
wait for 1 pilot(s) * ok

ok
close unit manager ok

ok

_images/01_unit_details.png
Getting Started (RP version v0.36.RCL

create session rp.session.cameo.merzky.016720.0006 ok
read config ok

submit pilots

create pilot manager ok
create pilot description \
create pilot description [local.localhost:64] ok

ok
submit 1 pilot(s) . ok

submit units

create unit manager ok
2dd 1 pilot(s) ok
create 128 unit description(s

submit 128 unit(s)

gather results

wait for 128 unit(s)
A

B e ok
* Unit.000000: Done, exit: O, out: Mon Oct 12 106 CEST 2015

* UNit.000001: Done, 0, out: Mon Oct 12 46 CEST 2015

* unit,000002: Done, exit: 0, out: Mon Oct 12 146 CEST 2015

*[...]

* Unit.000125: Done, exit: 0, out: Mon Oct 12 108 CEST 2015

* UNit.000126: Done, exi 0. out: Mon oct 12 08 CEST 2015

* UNit.000127: Done, exit: out: Mon Oct 12 108 CEST 2015

Uit arkdsr ¢ FLosy/Lacathost homs merohy radical pi Lot sandbor/ |
rp. session. cameo. merzky.016720.0006-pi Lot . 0000/ /uni t.. 000000

pilot id : pilot.0000
State history:

Mon Oct 12 2015 : Scheduling

Mon Oct 12 2015 : StagingInput

Mon Oct 12 2015 : AgentStagingInputPending

Mon Oct 12 2015 : AgentStagingInput

Mon Oct 12 2015 : AllocatingPending

Mon Oct 12 2015 : Allocating

Mon Oct 12 2015 : ExecutingPending

Mon Oct 12 2015 : Executing

Mon Oct 12 2015 : AgentStagingOutputPending

Mon Oct 12 2015 : AgentStagingOutput

Mon Oct 12 2015 : PendingOutputStaging

Mon Oct 12 2015 : StagingOutput

Mon Oct 12 2015 : Done
finalize
closing session rp.session.cameo.merzky.016720.0006 N
close pilot manager \
wait for 1 pilot(s) * ok

ok

close unit manager ok

_images/02_failing_units.png
Getting Started (RP version v0.36.RCL

create session rp.session.cameo.merzky.016720.0008 ok
read config ok

submit pilots

create pilot manager ok
create pilot description \
create pilot description [local.localhost:64] ok

ok
submit 1 pilot(s) . ok

submit units

create unit manager ok
2dd 1 pilot(s) ok
create 128 unit description(s

submit 128 unit(s)

gather results

wait for 128 unit(s)
e
e ok

* Unit.000000: Fail, exit: 127, err: d/13688.0/cmd: /bin/data: not found crr
* Unit.000001: Done, 0, out: Mon Oct 12 13:49:22 CEST 2015 ok
* Unit,000002: Done, exit: O, out: Mon Oct 12 13:49:23 CEST 2015 ok
* L.
* unit.000125: Done, exit: 0, out: Mon Oct 12 13:49:16 CEST 2015 ok
* Unit.000126: Done, 0, out: Mon Oct 12 13:49:16 CEST 2015 ok
* Unit.000127: Dome, exit: O, out: Mon Oct 12 13:49:21 CEST 2015 ok
finalize
closing session rp.session.cameo.merzky.016720.0008 N
close pilot manager \
wait for 1 pilot(s) * ok
ok
close unit manager ok

_images/03_multiple_pilots.png
$./examples/getting_started 03.py local.localhost xsede.stampede

Getting Started (RP version v0.36)

create session rp.session.cameo.merzky.016721.0001 ok
read config ok

submit pilots
create pilot manager ok
create pilot descriptions \
create pilot description [local.localhost:64] ok
create pilot description [xsede.stampede:64] ok

ok
submit 2 pilot(s) .. ok

submit units

create unit manager ok
2dd 2 pilot(s) ok
create 128 unit description(s

submit 128 unit(s)

gather results

wait for 128 unit(s)
A

B B AR S ok
* Unit.000000: Done, exit: O, out: pilot.0000
* Unit.000001: Done, 0, out: pilot.0001
* Unit.000002: Done, exit: O, out: pilot.0000
* Unit,000003: Done, exit: O, out: pilot.0001
* L.
* Unit.000125: Done, exit: O, out: pilot.0001
* Unit.000126: Done, exit: O, out: pilot.0000
* Unit.000127: Done, exit: O, out: pilot.0001
finalize
closing session rp.session.cameo.merzky.016721.0001 N
close pilot manager \
wait for 2 pilot(s) ** ok
ok
close unit manager ok

_images/04_scheduler_selection_a.png
$./examples/getting_started_04.py local.localhost xsede.stampede epsrc.archer

Getting Started (RP version v0.36)

create session rp.session.cameo.merzky.016721.0004 ok
read config ok

submit pilots

create pilot manager ok
create pilot descriptions \
create pilot description [local.localhost:64] ok
create pilot description [xsede.stampede:64] ok
create pilot description [epsrc.archer:64] ok

ok
submit 3 pilot(s) ... ok

submit units

select scheduler backfilling
create unit manager ok
2dd 3 pilot(s) ok

create 128 unit description(s

submit 128 unit(s)

gather results

wait for 128 unit(s)
A

B B AR S ok
* Unit.000000: Done, exit: O, out: pilot.0000
* Unit.000001: Done, exit: O, out: pilot.0000
* unit,000002: Done, exit: O, out: pilot.0000
* L.
* Unit.000125: Done, exit: O, out: pilot.0000
* Unit.000126: Done, exit: O, out: pilot.0000
* Unit.000127: Done, exit: O, out: pilot.0000
finalize
closing session rp.session.cameo.merzky.016721.0004 N
close pilot manager \
wait for 3 pilot(s) +-% ok
ok
close unit manager ok

nav.xhtml

 Table of Contents

 		
 RADICAL-Pilot 0.50.21 Documentation

 		
 Introduction

 		
 RADICAL-Pilot - Overview

 		
 What Problems does RP solve?

 		
 What is a Pilot?

 		
 What is a Compute Unit (CU)?

 		
 How about data?

 		
 Why do I need a MongoDB to run RP?

 		
 How do I know what goes on in the pilot? With my CUs?

 		
 What about logging and profiling?

 		
 Installation

 		
 Requirements

 		
 Installation

 		
 via PyPi

 		
 via Conda-Forge

 		
 Preparing the Environment

 		
 MongoDB Service

 		
 Setup SSH Access to Target Resources

 		
 Troubleshooting

 		
 User Guide

 		
 Getting Started

 		
 Loading the RP Module, Follow the Application Execution

 		
 Creating a Session

 		
 Creating ComputePilots

 		
 Submitting ComputeUnits

 		
 Running the Example

 		
 What’s Next?

 		
 Obtaining Unit Details

 		
 Running the Example

 		
 What’s Next?

 		
 Handle Failing Units

 		
 Running the Example

 		
 What’s Next?

 		
 Use Multiple Pilots

 		
 Running the Example

 		
 What’s Next?

 		
 Selecting a Unit Scheduler

 		
 Running the Example

 		
 What’s Next?

 		
 Staging Unit Input Data

 		
 Running the Example

 		
 What’s Next?

 		
 Staging Unit Output Data

 		
 Running the Example

 		
 What’s Next?

 		
 Sharing Unit Input Data

 		
 Running the Example

 		
 What’s Next?

 		
 Setup Unit Environment

 		
 Running the Example

 		
 What’s Next?

 		
 MPI Applications

 		
 Running the Example

 		
 What’s Next?

 		
 Using Pre- and Post- exec commands

 		
 Running the Example

 		
 What’s Next?

 		
 Examples

 		
 Simple Bag-of-Tasks

 		
 Preparation

 		
 Logging and Debugging

 		
 Chained Tasks

 		
 Preparation

 		
 Execution

 		
 Coupled Tasks

 		
 Preparation

 		
 Execution

 		
 MPI tasks

 		
 Preparation

 		
 Execution

 		
 Logging and Debugging

 		
 API Reference

 		
 Sessions and Security Contexts

 		
 Sessions

 		
 Security Contexts

 		
 Pilots and PilotManagers

 		
 PilotManagers

 		
 ComputePilotDescription

 		
 Pilots

 		
 ComputeUnits and UnitManagers

 		
 UnitManager

 		
 ComputeUnitDescription

 		
 ComputeUnit

 		
 Exceptions

 		
 Data Staging

 		
 Compute Unit I/O

 		
 What it looks like

 		
 Staging Directives

 		
 Staging Area

 		
 Compute Pilot I/O

 		
 Examples

 		
 String-Based Input and Output Transfer

 		
 Dictionary-Based Input and Output Transfer

 		
 Shared Input Files

 		
 Pipeline

 		
 Using Local and Remote HPC Resources

 		
 Introduction

 		
 Configuring SSH Access

 		
 Pre-Configured Resources

 		
 Writing a Custom Resource Configuration File

 		
 Customizing Resource Configurations Programatically

 		
 Unit Scheduler

 		
 Introduction

 		
 Round-Robin Scheduler (SCHEDULER_ROUND_ROBIN)

 		
 Backfilling Scheduler (SCHEDULER_BACKFILLING)

 		
 Testing

 		
 Introduction

 		
 Remote Testing

 		
 Adding New Tests

 		
 Benchmarks

 		
 Details on Profiling

 		
 Frequently Asked Questions

 		
 How do I…

 		
 …avoid the error “OperationFailure: too many namespaces/collections”

 		
 …avoid the error “Permission denied (publickey,keyboard-interactive).” in AGENT.STDERR or STDERR.

 		
 …avoid the error “Failed to execvp() ‘mybinary’: No such file or directory (2)”

 		
 …avoid errors from setuptools when trying to use a virtualenv?

 		
 …avoid the error “Received message too long 1903391841”

 		
 …avoid the pop-up “Do you want the application python to accept incoming network connections?” on Mac OSX.

 		
 …avoid the error “Could not detect shell prompt (timeout)”

 		
 Other Questions

 		
 How many concurrent RADICAL-Pilot scripts can I execute?

 		
 Developer Documentation

 		
 Installation from Source

 		
 License

 		
 Style Guide

 		
 Debugging

 		
 RADICAL-Pilot Architecture

 		
 PilotManager and PilotManager Worker

 		
 UnitManager and UnitManager Worker

_images/07_shared_unit_data.png
Getting Started (RP version v0.37)

create session rp.session.cameo.merzky.016725.0056 ok
read config ok

submit pilots

create pilot manager ok
create pilot description \
create pilot description [local.localhost:64] ok

ok
submit 1 pilot(s) . ok
stage shared data ok

submit units

create unit manager ok
2dd 1 pilot(s) ok
create 128 unit description(s

PRI ok
submit 128 unit(s)

gather results

wait for 128 unit(s)
A

S ok
UNit.000000: Done, exit: O, out: 36 input.dat
UNitI000001: Dome, exit: O, out: 36 input.dat
UNit,000002: Done, exit: O, out: 36 input.dat

[

unit.

Frx e

Done, exit: 0, out: 36 input.dat
unit. Done, exit: 0, out: 36 input.dat
UNit.000127: Done, exit: O, out: 36 input.dat

finalize

closing session rp.session.cameo.merzky.016725.0056 N
close pilot manager \
wait for 1 pilot(s) * ok

ok
close unit manager ok

session lifetime: 58.2s ok

_images/08_unit_environment.png
Getting Started (RP version v0.37)

create session rp.session.cameo.merzky.016725.0065 ok
read config ok

submit pilots

create pilot manager ok
create pilot description \
create pilot description [local.localhost:64] ok

ok
submit 1 pilot(s) . ok

submit units

create unit manager ok
2dd 1 pilot(s) ok
create 128 unit description(s

PRI ok
submit 128 unit(s)

gather results

wait for 128 unit(s)
A

S ok
* Unit.000000: Done, exit: O, out: unit.000000 greets jabberwocky

* Unit.000001: Dome, exit: O, out: unit.000001 greets)abberwocky

* Unit,000002: Done, exit: O, out: unit.000002 greets)abberwocky

* L.

* unit.000125: Done, exit: O, out: unit.000125 greets jabberwocky

* Unit.000126: Done, exit: O, out: unit.000126 greets)abberwocky

UNit.000127: Done, exit: O, out: unit.000127 greets jabberwocky

finalize

closing session rp.session.cameo.merzky.016725.0065 N
close pilot manager \
wait for 1 pilot(s) * ok

ok
close unit manager ok

session lifetime: 118.2s ok

_images/05_unit_input_data.png
Getting Started (RP version v0.37)

create session rp.session.cameo.merzky.016725.0035 ok
read config ok

submit pilots

create pilot manager ok
create pilot description \
create pilot description [local.localhost:64] ok

ok
submit 1 pilot(s) . ok

submit units

create unit manager ok
2dd 1 pilot(s) ok
create 128 unit description(s

PRI ok
submit 128 unit(s)

gather results

wait for 128 unit(s)
A

B B AR S ok
* Unit.000000: Done, exit: O, out: 36 input.dat
* Unit.000001: Dome, exit: O, out: 36 input.dat
* unit,000002: Done, exit: O, out: 36 input.dat
* L.
* unit.000125: Done, exit: 0, out: 36 input.dat
* unit. Done, exit: 0, out: 36 input.dat
* unit. Done, exit: 0, out: 36 input.dat
finalize
closing session rp.session.cameo.merzky.016725.0035 N
close pilot manager \
wait for 1 pilot(s) * ok
ok
close unit manager ok

ok

_images/06_unit_output_data.png
Getting Started (RP version v0.37)

create session rp.session.cameo.merzky.016725.0044 ok
read config ok

submit pilots

create pilot manager ok
create pilot description \
create pilot description [local.localhost:64] ok

ok
submit 1 pilot(s) . ok

submit units

create unit manager ok
2dd 1 pilot(s) ok
create 128 unit description(s

submit 128 unit(s)

gather results

wait for 128 unit(s)
B
N ok

UNit.000000: Done, exit: 0, out: ‘input.dat’ -> ‘output.dat’
UNit.000001: Done, 0, out: ‘input.dat’ -> ‘output.dat’
UNit,000002: Done, exit: O, out: ‘input.dat’ -> ‘output.dat’
[

UNit.000125: Done, exit: 0, out: ‘input.dat’ -> ‘output.dat’
UNit.000126: Done, 0, out: ‘input.dat’ -> ‘output.dat’
UNit.000127: Done, exit: O, out: ‘input.dat’ -> ‘output.dat’

Frx e

resulting data files:

output_000.dat output_026.dat output_052.dat output_078.dat output_104.dat
output_001.dat output_027.dat output 053.dat output 079.dat output_105.dat
output 002.dat output_028.dat output 054.dat output_080.dat output_106.dat
output 003.dat output 029.dat output 0S5.dat output_0Bl.dat output 107.dat
[...

output_023.dat output_049.dat output_075.dat output_101.dat output_127.dat
output_024.dat output 050.dat output 076.dat output_102.dat

output 025.dat output_051.dat output 077.dat output 103.dat

finalize

closing session rp.session.cameo.merzky.016725.0044 N
close pilot manager \
wait for 1 pilot(s) * ok

ok
close unit manager ok

_images/architecture.png
Application

Pilot-API

RP Client

Pilot Manager

Unit Manager

Pilot Launcher

o000

Unit Scheduler

00000000

SAGA

MongoDB

Resource A

Resource B

Local Resource Manager (LRMS) A
RP Agent

LRMS B
RP Agent

Unit Execution

o0

Unit Execution

_images/architecture_pilotmanager.png
pilots uid: (
pilot_data

I

pilot2 uid: (
pilotz_data

b

pa.subait pilot(
Pilot3 desc.
)

e aubaie pilot(
pilotd_desc.
)

stase pilots

pilotd_desc

«

pilot3_desc
i
tazt pilotd: |

_images/09_mpi_units.png
Getting Started (RP version v0.37)

create session rp.session.cameo.merzky.016725.0066 ok
read config ok

submit pilots

create pilot manager ok
create pilot description \
create pilot description [local.localhost:64] ok

ok
submit 1 pilot(s) . ok

submit units

create unit manager ok
2dd 1 pilot(s) ok
create 128 unit description(s

PRI ok
submit 128 unit(s)

gather results

wait for 128 unit(s)
A

B ok
UNit.000000: Done, exit: 0, out: unit.000000 unit.000000
UNit.000001: Done, exit: O, out: unit.000001 unit.000001
UNit.000002: Done, exit: O, out: unit.000002 unit.000002

[

unit.

Frx e

Done, exit: 0, out: unit.000125 unit.000125
unit. Done, exit: 0, out: unit.000126 unit.000126
UNit.000127: Dome, exit: O, out: unit.000127 unit.000127

finalize

closing session rp.session.cameo.merzky.016725.0066 N
close pilot manager \
wait for 1 pilot(s) * ok

ok
close unit manager ok

session lifetime: 93.8s ok

_images/10_pre_and_post_exec.png
Getting Started (RP version v0.37)

create session rp.session.cameo.merzky.016725.0067 ok
read config ok

submit pilots

create pilot manager ok
create pilot description \
create pilot description [local.localhost:64] ok

ok
submit 1 pilot(s) . ok

submit units

create unit manager ok
2dd 1 pilot(s) ok
create 128 unit description(s

PRI ok
submit 128 unit(s)

gather results

wait for 128 unit(s)
A

B B AR S ok
* unit. Done, exit: 0, out: unit.000000 greets jabberwocky
* unit. Done, exit: 0, out: unit.000001 greets]abberwocky
* unit Done, exit: 0, out: unit.000002 greets]abberwocky
* L.
* unit. Done, exit: 0, out: unit.000125 greets jabberwocky
* unit. Done, exit: 0, out: unit.000126 greets]abberwocky
* unit. Done, exit: 0, out: unit.000127 greets]abberwocky
finalize
closing session rp.session.cameo.merzky.016725.0067 N
close pilot manager \
wait for 1 pilot(s) * ok
ok
close unit manager ok

session lifetime: 122.9s ok

_images/architecture_unitmanager.png
uiatate [
Uilatart_time ntel uid:
Ui latop,_Eine unitl_data

I,
12.atate waitz uid: MongoDB.
2 aubaiaston time unit2_data
2. exe_toc

b

un.ubatt_unit(
nits_dase

unit3_desc.
input_data
unic3 desc.
output_data

unaubate_unie(
initd_desc
)

_images/getting_started_00_01.png
95
96
o7
o8
99

100

101

102

103

104
105

Submit the previously created Computelnit descriptions to the
PilotManager. This will trigger the selected scheduler to start
assigning ComputeUnits to the ComputePilots.

umgr . submi £_uni ts (cuds)

Wait for all compute units to reach a final state (DONE, CANCELED or FAILED)
report. header (' gather results')
umgr.wait_units()

95
96
o7
o8
99

100

101

102

103

104

105

105

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

Submit the previously created Computelnit descriptions to the
PilotManager. This will trigger the selected scheduler to start
assigning ComputeUnits to the ComputePilots.

Units = ungr-eubmi £ Uni ts (cuds)

Wait for all compute units to reach a final state (DONE, CANCELED or FAILED)
report. header (' gather results')
umgr.wait_units()

report.info('\n')
for unit in units:
report.plain(’ * %s: %s, exit: %3s, out: %s\n' \
% (unit.uid, unit.state[:4]
unit.exit_code, unit.stdout.strip()[:35])

get some more details for one unit:

import time

unit_dict = units[0].as_dict()

report.plain(*unit workdir : %s\n® % unit_dict['working_directory']

report.plain(*pilot id : %s\n' % unit_dictl'execution_details'1['pilot']

report.plain(*state history: \n"

for state_info in unit_dict['execution_details']['statehistory

report.plain(*\t\ths : %s\n’ % \

(time.ctime(state_infol ' timestamp']), state_infol'state'])

_images/getting_started_01_02.png
90
o1

92
o3
94
o5
96
o7
o8
99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

cud iCumiuteumtDescrlit)un()

cuds. append (cud)
report.progress ()
report. ok (' >>ok\n')

Submit the previously created Computelnit descriptions to the
PilotManager. This will trigger the selected scheduler to start
assigning ComputeUnits to the ComputePilotsl]

units = umgr.submit_units(cuds)

Wait for all compute units to reach a final state (DONE, CANCELED or FAILED)
report. header (' gather results')
umgr.wait_units()

report.info(*\n')
for unit in units:

for state_info in unit_dict['execution_details']['statehistory’
report.plain(*\t\ths : %s\n’ % \
(time.ctime(state_infol ' timestamp']), state_infol'state']))

90
o1
o2
o3
94
o5
96
o7
o8
99

100

101

102

103

104

105

106

107

108

109

110

111

112

13

114

115

116

117

118

119

120

121

cud = rp.ComputelnitDescription()

trigger an error now and then
if not i % 10: cud.executable = '/bin/data’ # does not exist
else : cud.executable = '/bin/date’

cuds. append (cud)
report.progress ()
report. ok (' >>ok\n')

Submit the previously created Computelnit descriptions to the
PilotManager. This will trigger the selected scheduler to start
assigning ComputeUnits to the ComputePilots.

units = umgr.submit_units(cuds)

Wait for all compute units to reach a final state (DONE, CANCELED or FAILED).
report. header (' gather results')
umgr.wait_units()

report.info(*\n')
for unit in units:

_images/rp.benchmark.png
PILOTS
[states]

UNITS
[states]

RADICAL-Pilot

Pilot and Unit Event Traces

FAILED

CANCELED

DONE

ACTIVE

PENDING ACTIVE

LAUNCHING

PENDING LAUNCH

FAILED
CANCELED

DONE

TRANSF. OUTPUT
PEND. OUTPUT
EXECUTING
SCHEDULING
PEND. EXECUTION
TRANSF. INPUT
PEND. INPUT
NEW

D

PILOT ACTIVITY
[slots / queue]

60

50

40

30

20

10

¢) 10 20 30 40 50 60 70 80 90 100

PILOT 1 (india.futuregrid.org[8]): PILOT 2 (india.futuregrid.org[1l6]):
- pilot/unit states recorded by RP agent - pilot/unit states recorded by RP agent
° pilot/unit states notified to application —— plilot/unit states notified to application
s pusy slot (i.e. used CPU core) s pusy slot (i.e. used CPU core)
= == == total number of slots = == == total number of slots

- UNnit queue length - N1t queue length

_static/ajax-loader.gif

_images/getting_started_02_03.png
S5
56
57
S8
s9
60
61
62
63
64
65
66

67
68
69
70
7
72
73
74
7
76
77
78

Define an [n]-core local pilot that runs for [x] mnutes
Here we use a dict to initialize the description object

)

report.ok (' >>ok\n')
Launch the pilot
pllnth

report. header (' submit units')

Register the ComputePilot in a UnitManager object.
umgr = rp.Uni tManager (session=session)
umgr. add_pi Lots (pi lot)

54
55
56
57
S8
s9
60
61
62
63
64
65
66
67
68
69
70
7
72
73
74
7
76
77
78
79

Define an [n]-core local pilot that runs for [x] mnutes
Here we use a dict to initialize the description object

)

i
pdescs. append (rp. ComputePi lotDescription(pd_init))
report.ok (' >>ok\n')

Launch the pilot
pilot

report. header (' submit units')

Register the ComputePilot in a UnitManager object.
umgr = rp.Uni tManager (session=session)
umgr . add_pi Lots (pi Lots!

_images/global-state-model-plain.png
LAUNCHING_PENDING

1

LAUNCHING

L

ACTIVE_PENDING

1

ACTIVE

‘ UMGR_SCHEDULING_PENDING

v
‘ UMGR_SCHEDULING

]
| UMGR_STAGING_INPUT_PENDING

v
\ UMGR_STAGING_INPUT

v
| AGENT_STAGING_INPUT_PENDING

v
\ AGENT_STAGING_INPUT

]
‘AGENT_SCHEDULING_PENDING

A 2
‘ AGENT_SCHEDULING

L]
‘ EXECUTING_PENDING

\ EXECUTING

v
| AGENT_STAGING_OUTPUT_PENDING

v
\ AGENT_STAGING_OUTPUT

v
| UMGR_STAGING_OUTPUT_PENDING

v
\ UMGR_STAGING_OUTPUT

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/plus.png

_static/file.png

_static/up-pressed.png

